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Local Free Convection to Non-Newtonian 
Fluids From a Horizontal, Isothermal Cylinder 
An experimental investigation of local free convection heat transfer rales from a horizon
tal, isothermal cylinder to non-Newtonian, power-law fluids has been conducted. Ex
perimental data were obtained employing a cylindrical test section 2.304 in. dia and 
8.018 in. long, constructed of twenty aluminum segments each independently, elec
trically heated. Non-Newtonian fluids utilized included four aqueous, carboxypoly-
methylene solutions. Both local and average Nusselt number results were compared 
with theoretical and empirical models. 

Introduction 

I I HE PRIMARY OBJECTIVK of this investigation was to 
experimentally determine local free convection heat transfer 
rates from a horizontal, isothermal cylinder to non-Newtonian, 
power-law fluids. These experimental data were then compared 
with the approximate integral solution form developed during this 
study as well as with similar solution results appearing in the 
literature. 

Previous investigations involving local free convection from 
horizontal cylinders have dealt principally with Newtonian 
fluids. Theoretical studies included the analysis by Hermann 
[ l ] 1 and the integral solution results of both Merk and Prins [2] 
and Levy [3]. Experimental investigations included the itvter-
ferometric studies by both Eckert and Soehngen [4] and Jones 
and Masson [5], as well as the effort by Fand [6]. All the ex
perimental studies employed air as the fluid medium. 

Acrivos [7] stimulated interest in free convection to non-New
tonian fluids with his analytical treatment of local heat transfer' 
from two-dimensional, isothermal surfaces to constant property, 
power-law fluids. The boundary layer equations, utilizing 
the power-law shear stress relationship, were reduced to di-
mensionless form employing generalized Grashof and Prandtl 
number groups, which reduce to conventional Newtonian fluid 
form at n = 1. Imposing the restriction that the value of the 
generalized Prandtl number form approaches infinity, Aerivos 
was able to obtain similar solution results in terms of the local 
Nusselt number as follows: 

1 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division and presented at the 

Winter Annual Meeting, Detroit, Mich., November 11-15, 1973, of 
THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS. Manuscript 
received bv the Heat Transfer Division, January 30, 1973. Paper 
No. 73-WA/HT-32. 
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The term (V(O) represents the flow behavior index dependent 
temperature gradient at the cylinder surface. 

Several recent investigations have considered free convection 
from vertical flat plates to power-law fluids. Reilly, Tien, and 
Adelman [8] and Sharma and Adelman [9] have obtained average 
free convection data using various Carbopol solutions. Tien [10] 
has proposed an approximate integral solution assuming that 
Prandtl number group values are infinite. Dale [11] has con
ducted an extensive experimental investigation for the constant 
heat flux condition, which agrees with the similar solution results 
by Chen [12], 

Analysis 
Details of an approximate integral analysis, developed during 

the course of this investigation, are presented in reference [IT] foi
st eady, two-dimensional, laminar flow under the condition that 
Arprar -* oo. In this analysis, which is a logical extension of 
Tien's |10] effort for an isothermal, vertical flat plate, physical 
properties were assumed constant except for the density difference 
term. As has been the case in previous approximate integral 
studies [3, 10, 13, 14], no distinction was made between the hy-
drodynamic and thermal boundary layer thicknesses. Prictional 
dissipation and circumferential conduction were both neglected 
in the energy equation. A physical representation of the free 
convection boundary layer is illustrated in Fig. 1. 

Integration of Acrivos' [7] simplified boundary layer equations, 
utilizing the velocity and temperature profile forms of Tien [10], 
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The local Nusselt number is expressed in terms of Tien's dimen-
sionless temperature gradient O'(0) and the boundary layer thick
ness 5 

hrr - r0 ' (O) rE 
, v M B t = _ = _ _ _ = _. 

Recognizing that Acrivos' diniensionless groups appear as 

(5) 

V 2(n + l) \r 3n+l _ 3n -+-1 (6) 

Fig. 1 Free convection boundary layer 

results in the following momentum and energy integral expres
sions: 

permits expression of the local Nusselt number in the following 
form: 

A'Nuj = 
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Unlike Tien's momentum integral expression, equation (2) con
tains a sine term which represents buoyancy force variation with 
circumferential position. Combining equations (2) and (3) and 
differentiating the resulting combined expression produces a 
linear, first order differential equation having the following 
product solution form for 5 in terms of Tien's constants B, C, D, 
and E: 

The term G(n), comprised of Tien's constants - * 

G(„) = E (8) 

is comparable to Acrivos' term 0/(0). As is evident in Fig. 2, 
both terms are moderately dependent on flow behavior index 
values. 

-Nomenclature-

A 8eE = segment area, ft2 

B,C,D,E = Tien's integral solution con
stants 

Cp = specific heat, Btu/lbm-deg 
F 

d = diameter, ft 
F"(0) — derivative of similarity 

function, d'F/drj1 at t) 
= 0 

g = gravitational acceleration, 
ft/sec2 

ijc = gravitational constant, 32.2 
lb„-ft/lb/-sec2 

G(n) = integral solution function 
h = free convection coefficient, 

Btu/hr-ft2-deg F 
i — current, amperes 
k = thermal conductivity, B t u / 

hr-f t-deg F 
K = consistency index, lb,„/ft-

(sec)2""" 
n = flow behavior index, dimen-

sionless 
A7Gr„d = Acrivos' Grashof number 

form, \~ ) M)"+2[<?/3(F« 

7 ' J ] 2 

Xo,,r 

A 7 p I a < i 

^ P r „ 

Q« 

R, 
r 

r 
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= surface heat flux, 1 Jtu/hr-ft2 

= strip resistance, ohms 

= radius, ft 
= tet npera uiire, deg ^ 
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<t> 

= velocity component in x 
direction, ft /sec 

= arbitrary velocity varying 
with x coordinate, ft/sec 

= coordinate parallel to the 
surface 

= coordinate normal to the 
surface 

= thermal diffusivity. ft2/hr 
= coefficient of thermal ex

pansion, 1/degF 
= boundary layer thickness, ft 
= surface-to-bulk fluid tem

perature difference T0 — 
T„, deg F 

= diniensionless temperature, 
(T - 7'J/(r„ - ?'„) 

= Acrivos' diniensionless sur
face temperature gradient 

= density, lb,„/ft3 

= shear stress, lb/ 'ft2 

= circumferential angle 
pts 
= average 
= film 
= surface 
= St 
= lo 

•ip 
;al 

= bulk fluid 
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Experimental Apparatus 
Test Fluids. Test fluids utilized during the heat transfer phase 

of this investigation were water and four dilute, aqueous Carbopol 
940 solutions,2 having mass concentrations of 0.053 percent, 
0.055 percent, 0.056 percent, and 0.058 percent. Over the shear 
rate range encountered, the four Carbopol solutions exhibited 
power-law fluid characteristics, expresed as 

K I du 

0o \dij 
(0) 

Based on the findings of Keilly [8] and Dale [11], all nonrheologi-
cal properties for the Carbopol solutions were considered to be 
the same as for water. Rheological properties, summarized in 
Table 1, were determined using a Brookfield Synchro-Lectrie 
Viscometer, Model LVT, in conjunction with a UL Adapter and 
with a specially constructed concentric cylinder arrangement. 
.Shear rates produced in these viscometric tests ranged from 0.076 
to 7.305 1, see, which were representative of values encountered 
at the test section surface. The more dilute Carbopol concentra
tions were produced by adding additional distilled water to the 
initial 0.058 percent solution. All solutions were neutralized to 
a pH ~ 7 using an aqueous, 10 percent by mass sodium hydroxide 
solution, producing transparent heat transfer fluids. All heat 
transfer fluids were contained in a 125 gal, rectangular, stainless 
steel tank. Bulk fluid temperatures were measured using two 30 
gal copper-constant an thermocouples and two 30 deg F to 100 deg 
F precision thermometers, located at the test section horizontal 
center line, 6 ' /2 in. on either side of the vertical center line. In 
addition to the heat transfer fluids, a smaller quantity of 0.058 
percent Carbopol 940, having slightly different rheological proper
ties than the 0.058 percent heat transfer solution, was separately 
prepared for use in estimating shear rates at the test section 
surface. 

Cylindrical Test Section. In order to achieve the desired isother
mal surface conditions, the cylindrical test section, depicted in 
Fig. 3, was constructed of twenty independently heated segments. 
The twenty segments were produced by longitudinally slotting a 
previously machined 6061-T6 aluminum tube, 2.000 in. OD and 
1.525 in. ID. Each segment was electrically heated using 0.002 
in. thick, 0.168 in. wide Tophet C nichrome resistance strips 
bonded to the segment interior surface utilizing a thin, 0.005 in. 

2 Carboxypolymethylene type 940, B. F. Goodrich Chemical Co. 

Fig. 3 Cylindrical test section assembly 

thickness of 11TV silicone adhesive. Prior to bonding, each seg
ment was coated with a 0.005 in. thickness of Eccoeoat 672 on all 
but the fluid exposed surface to provide electrical insulation. 
Since symmetry existed about the test section vertical center line, 
only ten individual heating and temperature measurement circuits 
were required, corresponding to angular positions of 9 deg, 27 deg, 
45 deg, 63 deg, 81 deg, 99 deg, 117 deg, 135 deg, 15.3 deg, and 171 
deg, measured from the lower stagnation point. 

Temperature measuremenls were made using 30 gal, Teflon in
sulated, eopper-constantan thermocouples installed within the 
aluminum segment at a diameter of 1.806 in. Surface tempera
tures were then determined from ihese measured values using 
Fourier's conduction equation. Within the same segments, 
Texas Instrument No. TI-TG-1/8, 120 ohm sensitors, 0.105 in. 
dia and 0.300 in. long, were installed as temperature detectors for 
the power supply and controller unit. 

The interior of the reassembled test section, having a mean 
outer diameter of 2.034 in. and a heated length of 8.018 in., was 
filled with loose fitting, magnesia insulation. Thermal insulation 
between adjoining aluminum segments was provided by sealing 
the 0.031 in. wide slots with silicone adhesive. The support 
flange was constructed of Teflon ('TFE) to minimize longitudinal 
conduction losses to the support structure. 

Power Supply and Controller. The ten channel power supply and 
controller unit consisted of a triac trigger circuit, sensistor bridge 
circuit, and voltage measurement circuit, as shown in Fig. 4. The 
triac trigger circuit served as the output voltage control device, 
utilizing a bi-directional silicon triac. Control was acccomplished 
by imposing an excitation voltage on the triac, resulting in the 
triac being in a conducting state over some time period less than 
half the 60 Hz input voltage period. The net effecl of this action 
was that only a portion of the input sine wave voltage was uti
lized, providing precise heater control. 

The sensistor bridge circuit provided the activation voltage 
necessary for the triac circuit. This activation voltage resulted 
from an imbalance between the Spectrol Precision Ten Turn 
Potentiometers No. 570-246 and temperature sensitive Texas 
Instrument Sensistors No. TI-TG-1/8. 

Measurement of the true rms voltage for the triac modified out
put was accomplished by the voltage measurement circuit, con
sisting of five scale resistors, a limiting amplifier, and an incan-

Temperature 
deg F 

70 
80 
90 

100 

Table 1 Rheological properties for Carbopol 9 4 0 solutions 

0.053 percent 0.055 percent 
solution solution 

0.856 
0.909 
0.926 
0.932 

0.0157 
0.0121 
0.0101 
0.00868 

0.794 
0.819 
0.842 
0.857 

0.0303 
0.0245 
0.0202 
0.0166 

0 
0 

0.0 

?! 

747 
763 

56 
ol 

pereen 
ution 

0 
0 

t 

A' 

0499 
0411 

0.774 
0,773 

0,0336 
0.0284 

0.0 

n 

0.642 
0.660 
0.675 
0,689 

58 percent 
solution 

K 

0.101 
0.0852 
0.0715 
0.0611 
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descent lamp. The 0 v, type 47 incandescent lamp was enclosed 
in a light free eonf ainer along wit h a type 868, vacuum phototube. 
Light from the lamp produced a small change in the phototube 
anode current. This change in anode current, which was de
pendent only on the heater circuit voltage drop, was detectable in 
the form of a voltage drop across a large coupling resistor, produc
ing a three digit output display on the Weston meter. All five 
range scales of the voltage measurement circuit were calibrated 
vising a true rms voltmeter. 

Local heat transfer coefficients for each of the ten angular 
positions weie obtained from voltmeter circuit and temperature 
difference measurements, in accordance with 

Table 2 Experimental and theoretical surface shear rates 

hx = 
(To - >„j 

(10) 

Current /for each segment was determined from total rms voltage 
drop measurements and total circuit resistance values. Special 
tests were conducted to assure resistance uniformity, 0.131 
ohm in. i 1.04 percent, of the nichrome heater strip material. 
Strip resistance change with temperature was determined to be 
approximately 0.7 percent and was therefore neglected. 

Shear Rate Apparatus. The technique employed for estimating 
shear rales at the test section surface is similar to the dye injec
tion schemes utilized by Eichhorn [15] and Dale [11]. Surface 
shear rates were determined from velocity profile slopes which 
were obtained from motion picture photographs of dye streak 
lines. The heated test section was installed in a plexiglass tank, 
which was equipped willi a syringe holder-ramp assembly. The 
syringe holder-rump assembly permitted radial movement, of the 
injection needles at angles of 0 deg, 27 deg, 45 deg, 63 deg, and 90 
deg, although measurements were made only at 45 deg and 63 
deg. Dye used was neutral density blue food coloring, composed 
of a ]..") percent propylene glycol-water solution. A precision 
digital timer provided the time base and known needle tip dimen
sions provided the displacement scale. Bulk fluid temperatures 
were determined using two precision thermometers. Filming was 
accomplished using a Bolex 155, S mm movie camera with Koda-
chrome II, Type A film. 

Experimental Results 

Surface Shear Rates. Shear rates at the test section surface in
fluence heat transfer results to the extent that flow behavior index 
and consistency index values are moderately shear rate dependent. 
As is evident in rheological curves appearing in [11, 17], signifi
cant changes in re and A' values occur only with relatively large 
changes in shear rate. The objective of this simple experiment 
was to establish the approximate location on the rheological curve 
at which the test section was operating, in a representative Carbo-
pol 040 solution, for viscometric purposes. In addition, these 
data would serve to provide some degree of experimental veriftca-

NICHROME STRIP 

Angle 
* 

45 deg 
45 deg 
63 deg 

Temperature 
difference 
20 deg F 
40 deg F 
30 deg F 

Experi
mental 

shear rates 
1 /sec 
0.46 
1.33 
1.88 

Acrivos' 
shea 

theoretical 
• rates 

1 /sec 
0.056 

percent 
0.55 
1.72 
2.36 

0.058 
percent 

0.33 
0.83 
1.17 

tion for the shear rate expression arising from Acrivos' [7] work. 

/ d u \ _ / 3 n + l \ 

U i v / o ~ l\2n + 1 / 

3 n + iYin + i { 3 j 3 r ( n _ r„)! ' /=( iVG ,„)2<n+1> 

(ATp r„)3n+I 

X (sin <£)2>i + i I 
J <£ = 0 

* __L_ 
(sin 4>fn + l d<t> 

) 'in+T 
} F'(0) (11) 

TRANSFORMER 

Fig. 4 Power supp ly and control ler uni t schematic 

In the present experiment, shear rate data were obtained at 
angles of 45 deg for AT values of 20 deg F and 40 deg F , and 63 
deg for a AT value of 39 deg F, utilizing a test solution having 
rheological properties comparable to the, 0.056 percent and 0.058 
percent, heat transfer solutions. No direct comparison between 
experimental and predicted shear rates for the shear rate test 
fluid is provided. The reason is that rheological degradation 
was detected in the shear rate test fluid during the three week 
time lapse between completion of the dye injection phase and 
attempts to obtain viscometric data at temperatures other than 
70 deg F. However, a comparison is provided in Table 2 between 
experimental shear rates and predicted values from equation (11) 
for the 0.056 percent and 0.058 percent heat transfer fluids at 
comparable angles and temperature difference values. Based 
on the results appearing in Table 2, it was concluded that reason
able confidence could be placed in predicted shear rate values from 
equation (11), which ranged from 0.024 to 8.048 1/sec for all heat 
transfer test solutions. Viscometric data were obtained over the 
shear rate range from 0.076 to 7.305 1 /sec. 

local Free Convection. Experimental free convection data were 
obtained for the five test fluids at surface-to-bulk fluid tempera
ture difference of from 14 deg F to 49 deg F. Heat transfer rates 
ranged from 14.3 Btu/hr-ft2-deg F for the 0.058 percent solution 
at 4> = 171 deg to 114.2 Btu/hr-ftz-deg F for water at• <j> = 9 
deg. Flow behavior index values for the Carbopol 940 solutions 
varied from 0.655 to 0.933. All local free convection data were 
expressed in terms of Acrivos' [7] dimensionless groups. Effects 
of variable fluid properties were accounted for by evaluating 
physical properties at the film temperature, which is defined as 
the mean of the surface and bulk fluid temperatures. Compari
sons are made between experimental data and theoretical similar 
and integral solution results. Over the range of n values en
countered, similar and integral solution forms, equations (1) and 
(7), are very nearly equal and are represented by a single curve. 

Local free convection data for water, obtained at, AT values 
from 20 deg F to 36 deg F, are presented in Fig. 5. As is evident 
in this comparative plot, the water data are represented rather 
well by the theoretical curve, although the data are approxi
mately 10 percent below predicted values for <f> = 0 deg to 120 
deg. Similar plots are provided for the 0.053 percent, 0.055 per
cent, and 0.056 percent, Carbopol 940 solutions in Figs. 6, 7, and 8. 
Experimental data for these solutions are also in general agree
ment with the theoretical curves, although at angular values 
greater than 150 deg, the data appear above the predicted curve. 
It is suggested that this phenomena evident in the upper stagna
tion region results from boundary layer interaction not accounted 
for in the theoretical treatment. Local free convection results 
for the 0.058 percent solution, representing ten test cases having 
AT values from 14 deg F to 45 deg F, appear in Fig. 9. I t is 
for this solution, exhibiting the greatest degree of non-Newtonian 
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behavior, that the most pronounced difference between theory 
and experiment exists. A comparison of experimental data for 
the more concentrated solutions reveals a gradual increase in 
results with increasing fluid concentration. This behavior may 
indicate that Acrivos' generalized dimensionless groups are not 
as sensitive to rheological property change as conventional, New
tonian fluid groups are to absolute viscosity change. However, 
previous results [4, 5, 6] involving local free convection from 
horizontal cylinders to a well defined Newtonian fluid such as air 
exhibit data variation comparable to that of the present. 0.058 
percent, solution. 

Average Free Convection. Average free convection results were 
obtained by integrating local Nusselt, Prandtl, and Grashof num
bers over the test section surface area. Since average results for 
Newtonian fluids usually appear with diameter as the character
istic dimension, the same procedure was followed in this analysis 
involving non-Newtonian fluids. Grashof and Prandtl numbers 
are the same as proposed by Acrivos, except that the diameter 
was used as the characteristic length. 

Results for water and for the four Carbopol solutions, extend
ing over the Grashof-Prandtl product range from 7.79 X 104 to 
7.42 X 10', are compared in Fig. 10 with the McAdams [16] corre
lation. As is evident, in this plot, the maximum difference be
tween the experimental data and McAdams' curve is approxi
mately 20 percent. A least square curve fit of all experimental 
data revealed a slope of 0.20 and an intercept of 1.19, compared 
to the McAdams values of 0.25 and 0.53. 

Conclusions 
The following conclusions may be drawn from this investiga

tion : 

1 An approximate integral solution was developed which 
agreed well with the more rigorous similar solution formulated by 
Acrivos [7]. 

2 Local free convection data obtained from a horizontal, iso
thermal cylinder immersed in water and in four Carbopol 940 
solutions were in general agreement with the similar and integral 
solution results. 

3 Average free convection data for all test fluids, expressed in 
terms of Acrivos' dimensionless groups with diameter as the 
characteristic length, were satisfactorily represented by the 
McAdams' [16] correlation. 

4 Limited experimental surface shear rate data increase con
fidence in the theoretical expression based on Acrivos' similar solu
tion results. 
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E R R A T A 

An errata on V. K. Dhir and J. H. Lienhard, "Similar Solutions for Film Condensation With Variable Gravity or Body Shape," published in 
the November, 1973, issue of the Journal of Heat Transfer, pp. 483-486. 

Equation (10) should be 6" + AF6" = 0 instead of 8" + AF0" = 0 . 
0.1 on the ordinate in Fig. ;•! should be 0 (zero). 
The words "since inertia contribulions are minimal" should be deleted from the last paragraph of the "Conclusions 
In reference, [3] the words Journal of Heal Transfer should be deleted and Vol. 87, 1965, should be Vol. 78, 1956. 

section. 
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ERRATA 
An errata on V. K. Dhir and J. H. lienhard, "Similar Solutions for Film Condensation Wifh Variable Gravity or Body Shape:' published in 

the November, 1973, issue of the Journal of Heal Transfer, pp. 483-486. 

Equation ([0) Hhollld be 0" + AFO' = () instead of 0" + AFO" = O. 
0.1 on the ordinate in Fig. :\ ~hould be () (zero). 
The wordH "since inertia cont.ribution,; are minimal" should be deleted from the last paragraph of the "Conchlsiom" sect.ion. 
In reference [3] the words Journal of Hm/ Trortffcr should be deleted and Vol. :-:7, 1\)6.), should be Vol. 7:-:, 19,,6. 
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Laminar Natural Convection 
About Vertical Plates With 
Oscillatory Surface Temperature 
The characteristics of laminar natural convection about a vertical plate with, periodically 
changing surface temperature have been studied by the finite-difference method. The 
effects of the amplitude and period, of the surface temperature oscillation on the instan
taneous and. time-average Nusselt numbers, temperature and velocity profiles ore demon
strated by several examples. High amplitude and a large range of frequency of the 
oscillation were considered in these examples. The. time-wise variation of the fluid 
temperature, in the inner region adjacent to the surface produces back heat flow at high 
amplitude, high, frequency, and at high, local Grashof number. 

Introduction 

N IATCRAL CONVECTION- with a periodically changing 
surface temperature is important in many engineering applica
tions. For example, in automatic control systems, electrical and 
electronic components are frequently subjected to periodic heat
ing and are cooled by the natural convection mechanism. It 
appears that this type of convection process has not yet been 
studied in detail. Several authors have performed analysis 
for the general unsteady problem with the arbitrarily time-de
pendent surface temperature. Sparrow and (Jregg [ l ] 1 studied 
the case in which the surface temperature varies slightly about a 
mean level which is higher than the ambient temperature. Aftei-
the usual similarity analysis, they carried out a perturbation 
analysis in terms of (he amplitude of the surface temperature 
variation. Their results are restricted to small amplitude and 
are valid if the high order derivatives of the surface temperature 
with respect to time decrease rapidly. Chung and Anderson [2] 
considered (he same problem and used a slightly different per
turbation expansion to solve it. Their residts are still subjected 
to restrictions in amplitude. The effect of sinusoidal variation 
in the surface temperature was studied by Nanda and Sharma 
[4, ")]. By writing the temperature and the velocity a_s sums of 
steady and oscillatory components, they obtained solutions for 
large, and for small values of frequency. Their work has been 
extended by Kelleher and Yang [.">] to include the nonuniform 

1 Numbers in brackets designate Keferences at end of paper. 
Contributed by the Meat Transfer Division for publication (with

out presentation) in Tun JOUHNAL OK HEAT TRANSFER. Manuscript 
received bv the Heat Transfer Division February If), 1973. Paper 
No.74-HT-B. 

surface temperature variation. Solutions were again obtained 
in the low and high-frequency regions by means of formal 
asymptotic expansions. Their results are valid for small ampli
tude of the surface temperature variation. The case of sinusoidal 
variation of surface temperature was also included in the asymp
totic solutions of unsteady natural convection obtained by 
Schetz and Eichhorn |(>], and Monoid and Yang [7J. These 
solutions were developed for the parallel-flow regime which repre
sents the short period after the transient has been started and 
in which heat is transferred by conduction only. 

In view of (he foregoing rcforonnv, if is seen that (he natural 
convection oscillatory flow with high amplitude and in the inter
mediate-frequency region has not been treated yet and cannot be 
treated by the general perturbation and asymptotic expansions. 
The application of finite-difference method on such a problem is 
presented in this paper. It, will be shown that the finite-difference 
method has no restriction on the amplitude and frequency of the 
surface temperature variation. Solutions can be obtained for 
both short and long period time after the transient has been 
started. The effects of surface temperature oscillation on the 
heat transfer rate, and temperature and velocity profiles are 
demonstrated through numerical examples. 

Analysis 
A schematic diagram of the physical model and coordinate sys

tem is shown in Fig. 1. A vertical flat plate is maintained at 
spatially uniform temperature T,c(f). The time-dependent sur
face temperature oscillates around a mean temperature 7',,,, which 
is higher than the ambient temperature 7'„. The timewise varia
tion of the surface temperature is described by the following 
equation: 
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TV - rv (Tm - 2_)/l sin erf (1) 

where A is the dimensionless amplitude parameter and „,_7r is 
(lie frequency of the oscillation. In practice, A is a positive num
ber less than unity, l ine to the difference between the surface 
and the ambient temperatures, a thermal boundary layer flow is 
induced by the buoyancy effect. The equations expressing con
servation of mass, momentum, and energy for unsteady laminar 
flow in dimensionaless form are as follows: 

dU dV _ 

dX d r ~ 

dU dU dU 
1_ r; (_ y _ . . = 

Or dX dY 
d<p d(P d<p 

dr " dA dl" 

where the dimensionless variables are: 

»x , . vx 
r = Grn-'% V = - ( > „ - ' ' • 

V V 

X - Gr„V. y = 1 Gr„, 

0 

d2f' 

= 2ip + ^ 

l &v 
" P r d F 2 

r 

tv 
", T = - . < j .2 

(2) 

(3) 

(4) 

_____ 

j i « ! ' ' (5) 

and 

Gr &/3(r„ ^ i T 3 

It should be pointed out that an arbitrary constant, " 2 " was 
added to the denominator of the definition of the dimensionless 
temperature <f, equation (5). This is due to the fact that the 
stability requirement does not permit the surface temperature to 
oscillate around unity. The corresponding initial and boundary 
conditions are 

V 

0, 

T = 0, 

r = o, 
V = 0, 

. = 0 at 

= 0, <p = 0 at. T = 0 (6) 

= »A(1 + A sin (2irr,/P)) 

at Y = 0, r > 0 (7) 

Y -* co and A" = 0, r > 0 (8) 

It is seen that the foregoing system is governed by three param
eters: the Prandtl number of the fluid, the amplitude parameter 
A, and the dimensionless period P defined as 

P = 
2irv 

[g&{Tm - Ta)M"'' (9) 

ME 

r 

J- | J J* ' Y M A X 

Fig. 1 Physical model and coordinates 

[8, 9] for step change surface temperature. The stability and 
convergence requirements were discussed in detail in [8]. The 
resulting explicit difference equations are indicated in the 
following: 

fi.i' - <Pi.j(l - Ax + A-2 - 2/l3) + <P._I,K1I 

+ sCi.;-lA3 + <pi.j + l(A3 - A2) 

Ui.i' = I'.-.y + ^rl-Ui.AUi.j - Vi-LjV^X 

(10) 

F „ j ( [ / , „ + 1 - I 

Since the solutions are not similar for the present case of oscilla
tory natural convection, equations (2)-(8) are solved by the finite- yL .' -
difference method. The time-dependent finite-difference method 
is an extension of the method developed by Heliums and Churchill where 

Vi.s-

)/AY + 2<ptlj' + (Ui,l+1 

- 2v,-,j + r/^,)/(_F)2] ( I D 

_ r [ ( f . v - r.',--,„-')/_.Y] (12) 

•Nomenclature-

A — dimensionless amplitude param
eter, equation (I) 

<7 = acceleration due, to gravity 
Gr = Grashof number 

h = heat-transfer coefficient 

A' = thermal conductivity of fluid 
Nu = Nusselt number 

P = dimensionless period parameter, 
equation (15) 

Pr = Prandtl number 
q = heat flux 
t = t fine 

T = temperature 

= component of velocity in vertical 
direction 

= dimensionless velocity, equation 
(8) 

= component of velocity in horizon
tal direction 

= dimensionless velocity, equation 

(8) 
= vertical distance 
= dimensionless distance, equation 

(8) 
= horizontal distance from plate 
= dimensionless distance, equation 

(8) 

a = 

0 = 
v = 

0) 

thermal diffusivity of fluid 
thermal expansion coefficient 
kinematic viscosity 

= dimensionless temperature, equa
tion (8) 

= dimensionless time, equation (8) 
= frequency 

Subscripts 

m = mean value 
to = value at wall (,./ = 0) 
x = local value of x 

co = value at infinity 
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Ai = UijAr/AX 

At Vi.iAr/AY (1.3) 

A3 = AT/KAY)*Pr] 

The primed quantities in equations (10)—(12) indicate the value 
of the variables at the new time interval. The set of explicit 
difference equations are first order accurate in time and in the 
convective terms. Forsythe [10] and Riehtmyer [11] have 
shown that the "up-wind" finite differences are necessary to en
sure convergence and stability in the nonlinear, first order con
vective terms. The diffusion terms are expressed as central dif
ferences with second order accuracy. In the computational pro
cedure <p' is first calculated at each grid point, in terms of the 
variables of the previous time step, from equal ion (10). Subse
quently V is calculated at each mesh point from equation (11), 
using the values of <p' already known. Finally the variable V is 
determined by using the values of V and by scanning the flow 
field row by row, from left to right, so that the V calculated at 
the left of the point of interest is immediately used in equation 
(12). Several time steps AT of decreasing magnitude were con
sidered for each case analyzed. The relative error in the solution 
at specific real times, T, was compared, using successive selections 
of AT. The final time step A T selected was the one corresponding 
to a relative error less than 10~2. 

With oscillating boundary conditions, it is known that at high 
frequencies, the boundary layer response is confined in a thin re
gion adjacent to the surface. The thickness of this region is pro
portional to (v/w)1'-. Thus in choosing the mesh size, both 
stability [8] and oscillating layer thickness have to be considered. 
The additional criterion for the present case is 

Vy < (v/tii)1' 

or, in dimensionless form 

V F < (P/2TT) ' -

(14) 

(15) 

A 60 X 60 mesh with variable grid spacing in the K-direction 
was employed in the numerical calculations. The variable mesh 

O 

X 

Fig. 2 Representative curves of transient heat flux at X = 4 8 7 . 2 

size near the wall, with uniform increasing grid spacing in the 
F-direetiort, was selected to satisfy the criterion of equation (1.5). 
Several numerical calculations were performed for Pr = 0.7 at, 
A = 0.2, 0.4, 0.5 and P = 3.2, 0.4, and 32. The amplitudes are 
considerably higher than that permitted by the perturbation 
method [3-5]. Kelleher and Yang [5] have expressed the fre
quency by a dimensionless parameter Z and performed their cal
culations for 0.1 < Z < I in the low frequency region and 10 < Z 
< 100 in the high-frequency region. The parameter Z is related 
to the present parameter P by the following equation: 

Z = 47T < i r„. P ( 1 6 ) 

For (ir„, in the range 106 to 10" and P between 3.2 to 32, the 
parameter Z> is then in the range 4 to 120. This covers the entire 
high-frequency region Kelleher and Yang have investigated [5]. 

Discussion of Results. Numerical solutions can be obtained by 
the finite-difference method for both short and long period time 
after the transient has been started. It is known for the case 
of step change in surface temperature thai the fully developed 
convective flow is established after a .short period of conduction 
and transition stage [12, 13]. The situation is about the same 
for the present case of oscillatory surface temperature. A 
quasi-steady state is reached within a few cycles after the oscilla
tory surface temperature has been imposed. The quasi-steady 
state is defined as the state at which the wall heat flux and fluid 
temperature profiles follow a defined periodic variation of time. 
Detailed numerical calculation indicates that the number of cy
cles within which the quasi-steady period is approached depends 
on the period P but is indifferent to the amplitude parameter A. 
Some representative curves of the transient heat flux are shown 
in Fig. 2. It is seen that nine cycles are required to approach 
the quasi-steady period at P = 6.4 for both A = 0.2 and 0.5. 
The number of cycles is reduced to three as P increases to 32. 
Practically, the real time of the transient period is very short for 
most of the engineering applications. Hence, only the results 
obtained for the steady-state period will be discussed hereafter. 

Heliums and Churchill [8] have shown that, for the case of step 
change surface temperature, the three independent variables 
(A', Y, r ) can be reduced so that U,'X' \ VX' ', and <f depend only 
on F/A"1'* and T 'A" 1 / 2 . The spatial variable Y/X'-' assumes 
the standard form of the similarity variable for the case of steady 
state surface temperature, y Gr„,' •'*;'x; the time variable T/X ' 
is explicitly dependent on the Grashof number based on the mean 
surface temperature, ( l f ; ' i

!)Gi ' , ' *• As the surface temperature 
undergoes a periodic variation, numerical calculations show that 
the foregoing two independent variables cannot, specify the con
vective process. In addition to the timewise variation, the 
velocity and temperature profiles also depend on the amplitude 
and period of the oscillation and on the dimensionless distance 
A' (or the local mean Grashof number Grm). Representative 
velocity profiles are shown in Fig. 3, which indicates a slight, de
pendence on (he period parameter P and a relatively stronger 
dependence on length A". Fig. 3 also reveals that the velocity dis
tribution approaches the steady-state case [14] for large X. Due 
to the propagation of the oscillation in the velocity field, the lead
ing edge effect, is probably more important in the oscillatory 
natural convection. Numerical calculations show that a time-
wise oscillation of the velocity distribution occurs in a thin region 
between the wall surface and the point at which the maximum 
velocity exists. For P = 3.2 to 32 and A = 0.2 to O.o, I he oscilla
tion of the fluid velocity in this region i.s less than 2 percent during 
a complete cycle and is not shown in graphs. No dependence on 
the amplitude parameter A was obtained from numerical calcu
lations. 

The variations of temperature profiles with these parameters 
are much stronger as illustrated in Figs. 4-6. The timewise 
variation and the dependence on X are shown in Fig. 4 for high 
amplitude (A = 0.5), and in Fig. 5 for lower amplitude (A = 0.2) 
and P = 6.4. In both cases, the oscillation of fluid temperature 
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Fig. 8 Effect of period on instantaneous heat transfer 

is confined in the region near the surface due to the thermal inertia 
of the fluid. The oscillation penetrates deeper in the boundary 
layer at higher amplitude as one expects. It is interesting to 
note that back heat flow (i.e., positive temperature gradient at 
the wall) occurs during the second half of the cycle (cot = -rr ~ 2ir) 
at high amplitude for both larger and small values of A", Fig. 4. 
This back heat flow does not occur at small A' (A' = 102.6) when 
the amplitude parameter is small (A = 0.2), as seen in Fig. o. 
The fact that the phase angle with respect to the imposed surface-
temperature oscillation depends on A" is probably due to the 
upward propagation of the oscillation in the velocity field. The 
effect of period on temperature distribution is given in Fig. (>. 
The region through which the oscillation penetrates increases 
with period (or, with the decrease of frequency). At P = 32, 
large portion of the flow field is influenced by the imposed periodic 
variation of surface temperature, but the shift of phase angle is 
small and no back flow occurs at this period. Comparison of 
Figs. 4 and 6 concludes that back heat flow occurs at high ampli
tude, low period, and larger A (or high Orashof number). 

The instantaneous heat transfer rate may be evaluated in terms 
of the surface temperature gradient 

q = -k = -2k(T„ - Ta)[gP(Tn - Tc a 
(17) 

There are two reference temperatures from which the Nusselt 
number and the Grashof number can be constructed. Based on 
the mean surface temperature T,„, one has 

X u , qx 
(Tm T„)k 

= 2X 
dY 

Giv = A3 

Based on instantaneous surface temperature 7',,, it gives 

(18) 

(19) 

Nil* = qx 
(Tw - T„)k 

d<p 

dY 

Grx = 2LCWX3 

(20) 

(21) 

Numerical calculations show that the heat flow rate, expressed by 
N^lJ;/Gl^t

1'/,, is strongly dependent, on time but slightly affected by 
the longitudinal distance A', or Gr,„. The effects of amplitude 
and period on the timewise variations of the instantaneous heat 
transfer rates are shown in Figs. 7 and 8, respectively. It is re
vealed from these two figtires that at a given longitudinal dis
tance, the ratio N i i r / O r / / ' (based on both Tw and Tm) follows 
a periodic variation with the same period as that of the surface 
temperature but with different amplitude and phase angle. The 
amplitude of heat flux increases with the increase of the amplitude 
and frequency of the imposed surface temperature oscillation. 
The back heat flow occurring during the second half of the cycle 
at high amplitude and short period is clearly indicated in Figs. 7 
and 8. For the case of steady surface temperature, Ostrach 
gives [14]: 

NiWGrx1/* = 0.354 for Pr 0.7 (22) 

Equation (22) is plotted in Figs. 7 and 8 for comparison. The 
ratio Nuj/Gri1 ' - ' based on Tw, which is the actual driving force 
for the instantaneous heat flux, has a smaller timewise variation. 

In the design of heat transfer devices, it is more convenient to 
have the average heat transfer coefficient over a complete cycle. 
The average heat transfer coefficient based on the mean surface 
temperature is 

"f" 
27T J o 

(T,„ 

and 

i Jo \ 

TJ 

dip 

dY 

it 

clt 

(23) 

(24) 
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Based on the instantaneous surface temperature, one has 

01 

5 0 0 

2TJO (T„. - T, - r j * 

and 

rir,1/' 2TT' JO <P«,\ ar/o 
(It 

(25) 

(26) 

Equations (24) and (26) are illustrated in Fig. 9. The ratio 
N i w ' G r r ' " based on average heat flux and (Tm — ?'«,), i.e., equa
tion (24), yields a single curve for all the values of amplitude A 
and period P. The curve approaches a constant value (0.354) 
which is the value for the steady natural convection process, 
equation (22). This is caused by the symmetry of the curves 
with respect to the constant value 0.354 in Figs. 7 and 8. The 
ratio Kuj/ 'Gi ' i" ' from equation (26) is lower than that of the 

steady case and also shows the dependence on the amplitude and 
period of the imposed surface temperature. Since this ratio is 
based on (Tw — 7'„), equation (25), (the actual driving force), it 
reveals the actual process of an oscillatory natural convection. 
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Radiation From Cavities With Nonisothermal 
Heat Conducting Walls 
The radiant efflux from a cylindrical cavity having nonisothermal bounding surfaces is 
determined by solving a problem of combined radiation and conduction. The cavity may 
be visualised as a circular hole machined into the exposed face of a solid, with the solid 
being heated uniformly from behind- A two-dimensional temperature distribution is 
set up in the solid owing to radiative heat losses from the cavity and from the exposed 
face of the solid. A solution method is employed wliereby the radiation and conduction 
problems are dealt with successively. Results are obtained, for parametric values of the 
cavity emitlance and depth-radius ratio and of a group which fixes the axial temperature 
variation. The results indicate that the radiant efflux from the cavity increases with in
creasing values of the aforementioned parameters. The effect of the presence of the 
cavity is confined to a region of the solid whose depth, and radius are, respectively, twice 
and four times the depth and radius of the cavity. 

Introduction 

I I HE KADrANT INTERCHANGE and emission charac
teristics of heated cavities have been studied extensively during 
the past decade and a half, and a substantial literalure has been 
built up. Representative publications are cited in textbooks and 
survey articles, for example [1, 2, 3].1 In the main, the published 
analyses have dealt with the case in which the thermal conditions 
at the bounding surfaces of the cavity are prescribed. A conse
quence of this type of formulation is that the radiative exchange 
within the cavity can be solved without any consideration of the 
heat conduction processes in (he walls of the cavity. 

There are practical situations where the thermal boundary 
conditions on the cavity walls are carefully controlled, for in
stance, in black body cavities. On the other hand, it may often 
be true that the thermal conditions on the cavity walls find their 
own level and distribution as a result of the coupling between heat 
conduction in the walls and radiative transport in the cavity. 
Since in these cases the thermal conditions on the walls are not 
known in advance, the large body of information that is available 
for cavities with specified surface conditions cannot be directly 
applied. Furthermore, as will be documented shortly, there is 
only a sparse literature dealing with radiating cavities having 
conduction coupling. 

In the present paper, such a problem of coupled cavity radia-

1 Numbers in brackets designate References at end cf paper. 
Contributed by the Heat Transfer Division for publication, (with

out presentation) in THE JOUHXAL OF HEAT TRAXSFEU. Manuscript 
received by the Heat Transfer Division April 9, 1973. Paper No 
74-HT-F. 

tion and wall conduction is investigated. Consideration is given 
to a circular cylindrical cavity of finite length situated in a heat 
conducting solid. The physical situation may be visualized as a 
circular hole drilled, or otherwise machined, into the exposed face 
of a solid, with the solid being uniformly heated from behind. 
Radiative heat losses to the environment from the cavity opening 
and from the exposed face of the solid give rise to temperature 
variations in the solid and, in particular, to a temperature 
gradient along the bounding surfaces of the cavity. 

The just-described, coupled radiative-conductive heat transfer 
problem can be advantageously analyzed in two steps. First, a 
partial solution of the radiative transfer problem for the cavity 
was carried out which yielded a relation between the local heal 
flux on the cavity wall and the cavity surface temperature dis
tribution. This relation then served as the boundary condition 
for the heat conduction problem for (he solid. The numerical 
results were obtained by finite difference techniques. 

For (he solutions, parametric values were assigned to the sur
face omittance, to (he cavity depth-radius ratio, and to a dimen-
sionless group which sets the steepness of the temperature varia
tion in the direction of the cavity axis. Results are presented 
for the radiant energy elllux characteristics of the cavity and for 
the temperature distribution along the bounding surfaces. 

A search of the literature did not uncover any prior publications 
dealing with coupled radiative transfer in nonblaek cavities and 
two-dimensional conduction in the surrounding medium. \\ inter 
[4] analyzed the radiative transfer in infinitely deep black-walled 
grooves cut into a heat conducting semi-infinite solid. The 
radiation characteristics of a thin-walled cylindrical cavity were 
studied in [oj under the assumption (hat the conduction in the 
wall was one-dimensional. 
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Analysis 
Although both the distributions of temperature and of heat flux 

along the bounding surfaces of the cavity are not known in ad
vance, it is possible to develop a relationship between them. 
This relationship can be determined by solving the equations of 
radiant interchange for the cavity and, once obtained, serves as a 
thermal boundary condition for the heat conduction problem in 
the solid. It is, therefore, appropriate to subdivide the analysis 
into two discrete steps, with the radiation and conduction prob
lems being treated successively. Whereas the radiation problem 
is linear in (he fourth power of the temperature, the conduction 
problem is nonlinear owing to the radiation boundary conditions. 

In the analysis, if will be assumed that the temperature field is 
axisymmetric with respect to the axis of the cavity. 

Radiative Interchange in the Cavity. The formulation of the ra
diant interchange problem is facilitated by reference to Fig. 1, 
which pictures a cylindrical cavity of depth B and radius r0. For 
the analysis, the bounding surfaces of the cavity are envisioned 
as being subdivided into axisymmetric area elements i = 1, 2, 3, 
. . ., A'. Kach element is assumed to have a uniform temperature 
7',-. The disposition of the area elements was chosen with the 
forthcoming heat, conduction problem in mind. In particular, 
elements 1 and ms represent elements whose areas are half of that 
of the other elements on the side wall of the cavity. Further
more, the corner element in consists of two subelements m, and 
nii„ respectively situated on the side wall and on the cavity 
base. Although these subelements share a common tempera
ture '/',„, they have different normals and must be separately 
taken into account in the radiation analysis. 

If il is assumed Ihat. the cavity walls are gray, diffuse emitters 
and reflectors of radiant energy (graybody emittance e), a radi
osity equation can be written at each element as follows [2] 

Hi = eo-'/V + (1 ' E FiiBi, 1 < i < N 

The radiosity B represents the radiant energy leaving a surface 
location per unit time and unit area, and the Fij are angle factors. 
In writing equation (1), it. was assumed that any external radia
tion that enters the cavity through its opening is negligible. 

In the present problem, the Fij correspond to interchange be
tween pairs of ring elements on the side walls and to interchange 
between a ring element on the side wall and an annulus or a disk 
on the base. The numerical values of these angle factors have 
been calculated without approximation by employing angle factor 
algebra in conjunction with the well-established expression for the 
angle factor for two parallel disks. The determination of the re
quired angle factors is detailed in the Appendix of [6]. 

The rate of heat loss by radiation at any element can be ex
pressed as [2] 

Qi 
Ai 

= ((xTi* - Bi), 
1 - e 

1 < i < N (2) 

By elimination of <r7V between equations (1) and (2), it is seen 
that the heat loss at any element is equal to a weighted summa
tion of the radiosities at all the elements. Unfortunately, such a 
relationship between the local heat loss and the radiosities is not 

Fig. 1 Schematic of cavity and surrounding solid 

very useful as input to the conduction problem, where the de
pendent variable is the temperature, not the radiosity. It would 
be much more advantageous to eliminate, the radiosity between 
equations (1) and (2) in order to obtain a relation between heat 
transfer and temperature, but this cannot be done with these 
equations as they now stand. 

To proceed toward a heat transfer temperature relation, it, is 
useful first to rewrite equation (1) in the form 

E Xaiti = vTS, 
3 = 1 

1 < i < N 

where 

[S.i - (1 - e)Fisl/e 

(3) 

(4) 

and Sij is the Kroneeker delta. The numerical values of the z,-y 
are readily calculable once the disposition of the elements has 
been made (thereby fixing the Fa) and e has been chosen. 

The \ij can be arranged into an N by Ar matrix which can be 
inverted to give a new matrix whose elements are \pij. The in
version of the matrix also inverts equation (3), so that 

Ri = E i>>a?>4, 1 < '" < Ar 

j = t 

Then, substitution of (5) into (2) yields 

N 

Qi/Ai = E A,yo-2V, I < i < Ar 

> = i 

where the Ai,- are known constants given by 

A,7 = e(5.7 - ^ , 7 ) / ( l - e) 

(5) 

(6) 

(7) 

Equation (6) indicates that the rate of heat loss by radiation at 

•Nomenclature-

A = surface area 

B = radiosity 

Fij — angle factor 

k — thermal conductivity of solid 

L = depth of cavity 

Q = rate of radiant, elflux from cavity 
Qi = local rate of heat, transfer 

R = dimensionless coordinate, r/r0 

r = radial coordinate 
r0 = radius of cavity 
T = temperature 

Th = temperature at center of base 
T, = effective temperature of cavity 
T, = surface temperature of solid in 

sence of cavity 
ab-

7, = dimensionless coordinate, z/L 

z = axial coordinate 

t = emittance 

6 = dimensionless temperature, T/T, 

a = Stefan-Boltzmann constant 
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„ny surface element is equal to a weighted sum of the T' values at 
.,11 the elements. 

Once the numerical values of the A,-> are available, equation ((!) 
represents a highly convenient form of input from the radiation 
problem to the conduction problem. It will serve as the thermal 
boundary condition for that portion of the solid which bounds the 
cavity. A particular advantage of equation ((>) is that it repre
sents a set of algebraic equations whose numerical coefficients re
main fixed even if an iterative-type solution of the conduction 
problem is employed. 

Heat Conduction in the Surrounding Solid. The temperature dis
tribution in the solid is governed by the two-dimensional Laplace 
equal ion in r,z cylindrical coordinates. The complete specifica
tion of the problem requires a statement of the boundary condi
tions. For the surfaces of the solid which bound the cavity, the 
heat transfer- temperature relation of equation ((>) serves as the 
boundary condition. Since a finite-difference type of solution is 
to be used, the heat transfer rate Qt referred to a finite area A, is 
directly applicable. The temperatures '/'_,- are associated with 
nodal points as indicated by the blackened dots in Fig. 1. 

At the surface of the solid that is exposed to the external sur
roundings, there is a local radiative heat loss per unit time and 
unit area given by er/7'4 or, for a finite size surface element with 
area /I,-, 

Qi = eaVi'A,- (8) 

The radiant energy from the surroundings that is absorbed by the 
exposed surface i.s assumed to be negligible. 

Other boundary conditions can be deduced by noting that the 
presence of the cavity will effect the temperature field in only a 
finite portion of the solid. Let r — r„, denote the greatest radial 
penetration of the presence of the cavity effect and z = z„ the 
greatest, axial penetration. For r > r,„ and any z, and for z > zm 

and any r, the temperature field in the solid coincides with that 
which would exist if the cavity weri) not present. If (lie solid is 
uniformly heated from behind (i.e., along a surface z = constant) 
and edge effects are negligible, then the temperature field in the 
solid is governed by t)277dz2 = 0 when there is no cavity. Fur
thermore, if 7', denotes the temperature of the exposed surface of 
the solid in the absence of the cavity, with corresponding radia
tive heat loss er/7V = (A-d77dz)2 = o, the temperature distribution 
in the solid i.s given by T(z) = 7\ -f- eaT^z/k, Therefore, with 
the cavity present, the boundary conditions along r = r„ and 
z = Zoo are 

T = T, + eaT,'z/k, 

T = T, + ea'l\lzjk, 

(9a 

(9o 

In order to minimize the number of parameters that have to be 
specified in the subsequent numerical computations, it is useful to 
introduce dimensionless parameters as follows 

R = r/n, Z z/r0, 0 = TIT, (10) 

An examination of the dimensionless forms of the energy equation 
and boundary conditions indicates three independent parameters 

L/r0, o-r.Vo/fc (11) 

The surface omittance e and the depth-radius ratio L/r0 have clear 
physical meanings. The significance of the quantify <rT,3r0/k 
can be identified by noting that the dimensionless temperature 
distribution in the solid when there i.s no cavity (or for r > r„ 
when there is a cavity) is 

= 1 + e O 1\ sn/k )Z (12) 

Therefore, for a given e, the slope of the temperature distribution 
in the axial direction is fixed by the magnitude of aT,3r0/k. 

Owing to the nonelemenfary shape of the solid, a numerical 
solution is appropriate. In approaching a finite-difference formu
lation, one may deduce difference equations either from Laplace's 

equation or from a direct energy balance on the volume elements 
of the finite-difference network. There is some uncertainty in 
using Laplace's equation as a starling point, as witnessed by the 
fact that the quantities 

0 / d r \ d''7' d7' 
r j , r + 

Or \ Or / dr- Or m i 

do not yield the same finite-difference terms, even (hough they 
/ire analytically identical. This uncertainty arises because the 
area for conduction in I ho radial direction varies with the radius, 
this variation is represented to different degrees of approximation 
by the finite-difference forms of the first and second members of 
equation (b>). On the other hand, by deriving the difference 
equations from an energy balance on the finite-difference volume 
elements themselves, an exact representation of the heat transfer 
areas can be obtained. This is the approach that was used here. 

The grid structure at a typical interior node is shown at the lefi 
of Fig. 2. The shaded element, which appears as a rectangle in 
the sketch, actually represents an axisymmetrie annular disk. 
To enable the use of a more dense concentration of nodal points in 
regions of more rapid temperature change, the difference equations 
were written with variable step sizes in both r and :. The grid 
was laid out so (hat the faces of the elements are situated mid
way between the adjacent nodes; therefore, rd lies midway be
tween * and 1, iid lies midway between * and 4, etc. If the 
coordinates of node * are r* and z*, the areas of the faces ah, he,. . . 
can be expressed as 

A,,,, =-• ?r!r* - »/2Ar')(Az' + Az") (14a) 

Aw = Aati =-• 7rlr*(Ar' + Ar") + (Ar'"~ - Ar'-) '4) (146) 

AM = 7r(r* + \^Ar")(Az' + Az") (14c) 

The temperature gradients needed for expressing the heat fluxes 
at the faces of the volume element were evaluated via central 
differences, for example, (dT/dr),,,, -^ (T* — '/',,) 'Ar'. With 
these, (lie finite-difference form of the energy equation al node * 
can be written as 

A typical node for an element situated adjacent to the cavity 
surface is pictured at the right of Fig. 2. As before, the faces of 
the element bisect the distances between the nodes (e.g., nl is 
situated midway between * and 1). The face ab of the element 
lies on the cavity wall. In terms of the face areas Aa>,, At,.-, Ar,i, 
A ad and using central differences for the derivatives (dT.'dr\,i, 
(dT/dz)a,t, and (dT/dz)i„., the difference equation for node * is 

'}'* = 
< ^ ) - • & - • £ - < * < « • ' -; 

£)*&X") 
(10) 

—— *" 
•* 

i 

i 

d 

az 
• 4-

M 

I . 

//// ,. I 

r- - &r A 

Fig. 2 Typical interior node (left diagram) and typical node adjacent to 
cavity surface (right diagram) 
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Fig. 3 Radiant energy efflux from cavity opening, l /r0 = 4 

where rhs (6) denotes the right-hand side of equation (6). 
Difference equations expressing energy conservation were 

derived in a similar manner for the other boundary nodes and for 
special nodes such as that at, the intersection of the cavity side 
wall and the base, those on the symmetry line, etc. These dif
ference equations are given in [G]. 

Inasmuch as the boundary conditions on the exposed surface of 
the solid and on the bounding surfaces of the cavity contain 7'4, 
the set, of difference equations is nonlinear. To enable the use of 
the powerful solution methods associated with linear equations, it 
is advantageous to linearize the system for interim calculations. 
The final results will satisfy the full nonlinear system. 

To motivate the form of the linearization, suppose that T, is a 
temperature that is slightly different, from 1\. Then, by the 
binomial expansion 

7V = [fi + (T< - fi)}' ^ ti* + ifiHTi - fi) (17a) 

TV = 47VT,- - 37', (176) 

Clearly, when 7\- = 7\, equation (176) reduces to an identity. 
In each of the nonlinear difference equations, T* was replaced 

by the right-hand side of equation (176). Numerical values of the 
quantities rl\ at the various nodes i were supplied as input in
formation as described in the following. In this way, the dif
ference equations were made linear in the unknown temperature 
distribution T(r, z). 

The linearized difference equations for all the nodes can be 
written in matrix form as 

isim = ic] (18) 

where [S] is a square matrix, and [7'J and [C] are vectors. Since 
S and C contain the unknown values 7', an iterative solution 
procedure was employed. The first step in the iteration method 
was to input numerical values of T so that S and C could be 
evaluated. Then, the matrix S was inverted and the temperature 
distribution obtained. For the next cycle of the iteration, the 
values of T were set equal to the just-calculated values of T. 
With these, the matrix equation was solved once again, yielding 
a new distribution for T. Again, the T were set equal to the new 
values of T, and the process repeated until the values of T and 
T at mesh point converged. The convergence criterion was that 
T and T should differ by less than 0.0001 (note that T is on the 
order of unity). After experience was developed with respect to 
the selection of the initial inputs for f, only a few iterations were 
required for convergence. 

0.8 

0.4 0.5 0.6 0.7 0.8 0.9 

e 

Fig. 4 Radiant energy efflux from cavity opening, L/r0 = 8 

A finite-difference grid containing 180 mesh points was used 
for the calculations. The layout of the grid is illustrated in Figs. 
1 and 2 of [6]. The solutions were carried out on a CDC 6600 
computer. 

Results and Discussion 
The solutions and results depend on three independent pa

rameters: the emittance e, the temperature gradient parameter 
txT^n/k, and the depth-radius ratio L/r0. Values of 0.4, 0.55, 
0.7, and 0.9 were assigned to e, while aT,3ri,i'k was varied from 0 
(isothermal cavity) to 0.1.5. For each of these cases, solutions 
were obtained for L/r0 — 4 and 8. 

The quantity that is of primary interest in connection with the 
radiation characteristics of heated cavities is the rate Q at which 
radiant energy streams out of the cavity opening. For isothermal 
cavities, it is customary to present the results for Q in terms of 
the apparent emittance «„. This is a dimensionless quantity 
which is the ratio of Q to the radiant energy emitted by a black 
surface whose area is equal to that of the cavity opening and 
whose temperature is the same as that of the isothermal cavity. 
In the present situation, the physical significance of the apparent 
emittance is lost because the cavity walls are not isothermal. It 
is, nevertheless, convenient to employ a dimensionless presen
tation whose form is similar to that of the apparent emittance, 
that is, Q/irrfaT,*. The use of T, in this dimensionless grouping 
is motivated by the likelihood that its value would be known in 
any application of the results. 

The results for the energy efflux are presented in Figs. 3 and 4, 
respectively, for depth-radius ratios L/r0 of 4 and 8. In each 
figure, Q/Trro2<rT,i is plotted as a function of e for parametric 
values of aT,3ri>/k. The lowermost curve in each figure corres
ponds to the isothermal cavity. Inspection of the figures indi
cates that the curves lie successively higher as aT/ro/k increases. 
Also, along each curve, Q/irr^aT^ increases with e. Further
more, Q/7rr0V7Y1 > 1 over much of the investigated range of 
parameters. It will now be demonstrated that these trends are 
physically reasonable. 

The effect of the parameter aT,3rt,'k may be explained by not
ing, with the aid of equation (12), that the temperature of the 
solid increases more rapidly with depth as this parameter becomes 
larger. Consequently, relative to a fixed value of T,, the tem
perature at any location on the cavity wall is higher at larger 
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values of aT,zra'k and, correspondingly, more radiant energy is 
emitted. Therefore, the increase of Q 7rr0

2cr7',,4 with aTs
3ro:'k as 

shown in Figs. 3 and 4 is reasonable. 
The trend of the results with e is a consequence of two factors. 

First, the emissive power increases with increasing t, thereby 
causing Q to increase. Second, as indicated by equation (12), 
larger 6 gives rise to larger temperature gradients and higher 
temperatures, which further tends to increase the emitted radia
tion. This second factor is more important at larger values of 
ffT,3ro/k and causes the curves to straighten out rather than bend 
over as they do at small values of crTr

3ra/k. 

From a comparison of Figs. 3 and 4, it is seen that similar t rends 
prevail in both figures. The values of Q/TnVcr'A4 of Fig. 4 are 
generally higher than those of Fig. ?,. This is because, for fixed 
values of e and of aTt

3ra'k, substantially higher temperatures are 
attained in the cavities of Fig. 4 (l..'ra = 8) than in the cavities of 
Fig. 3 (L/n = 4). 

The reason that Q/irr^aTY exceeds unity for certain ranges of 
the parameters is that temperatures on the cavity walls may be 
much greater than T.,. 

An indication of the accuracy of the present results may be ob
tained from the isothermal cavity curves of Figs. 3 and 4. Within 
the scale of the figures, the present results are indistinguishable 
from those of Lin [7], who employed an integral equation formula
tion, the solutions to which involved integration over 100 points 
distributed along the walls of the cavity. This excellent level of 
agreement lends support to I he present formulation and solution 
method. 

Although Figs. 3 and 4 contain an easily applicable presentation 
of the results, other presentations may be made which highlight 
other features of (he results. For instance, one may seek effective 
temperatures T, to characterize the nonisothermal cavities so that 
Q/7rro2crjfV can be plotted against t as a single curve for each 
lJr<t. In other words, b.y a proper choice of T, all the curves of 
Fig. 3 can be collapsed onto that for the isothermal cavity 
((rT.,3>'o'k = 0), and similarly in Fig. 4. 

The Te values which give rise to such universal curves are shown 
in Fig, o. The left-hand part of the figure is for / . /r0 = 4, and 
the right-hand part is for L/r0 = 8. Both parts of the figure 
have the same ordinate scale, but the left-hand part is referred to 
the upper abscissa. The abscissa variable is the ratio (Tb/T,)*, 
where Ti, is the temperature at (he center of the cavity base. 

The main message of the figure can be obtained by noting that 
along any curve, (Te/1\Y is substantially less than (TiJTs)

i. 
In other words, the effective temperature of the cavity is much 
closer to the surface temperature T, than to the base temperature 
Ti. This finding indicates that of the radiant energy which 
streams out of the cavity, the majority is emitted from the lower 
temperature portion that is situated near the cavity opening. 
Radiation emitted in portions of the cavity more remote from the 
opening is absorbed to a considerable degree before if reaches the 
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€ = 0 . 9 / ' 
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Fig. 6 Representative temperature distr ibut ions a long cavi ty side w a l l , 

l/fo = 4 

1.0 *2-

, = 8 
= 0.7 

0.4 

Z /L 

Fig. 5 Effective temperature of nonisothermal cavities 

Fig. 7 Representative temperature distr ibut ions a long cav i ty side w a l l , 
L/r„ = 8 

plane of (he opening. Ai a given value of 7V 7'.., smaller values 
of TeT, are encountered as e increases, indicating that a larger 
fraction of the outstreaniing radiation originates from surface 
locations near (he opening. 

Another quantity of interest furnished by the solutions is the 
temperature distribution along the bounding surfaces of the 
cavity. Representative results are shown in Figs. i'i and 7, where 
the temperature along the cavity side wall is plotted against the 
dirnensionless axial coordinate z 'L. These figures correspond re
spectively to cavity depth-radius ratios of 4 and 8, and to an in
termediate omittance value of 0.7. It should also be noted that 
the ordinate of Fig. 7 covers a substantially larger range than 
does Fig. 0, and its scale is correspondingly compressed. The 
solid lines in these figures represent, the results for the coupled 
radiation-conduction problem, whereas the dashed straight lines 
represent the temperature field in (he absence of the cavity, equa
tion (12). 

Inspection of (he figures indicates (hat for small tempera!lire 
gradients, the temporal ure distribution along the cavity wall is 
nearly coincident with the straight line distribution that prevails 
in the solid when the cavity is absent. For larger gradients, the 
deviations increase. 

When derivations do occur, the temperatures in the deeper parts 
of the cavity lie below those of the dashed lines. On the other 
hand, near the cavity opening, the cavity wall temperatures 
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may exceed those of the dashed lines. This effect is accentuated 
in cavities where higher values of T/T, are attained and also at 
larger values of e. The reason for the just-cited increase in the 
cavity wall temperature adjacent to the opening is that these por
tions of the wall intercept and absorb substantial amounts of 
high temperature radiation that originates in the deeper portions 
of (he cavity. 

Turning next to (he solid, it is of interest to inquire how much 
of the solid is effected by the presence of the cavity. This in
formation is relevant, for instance, to the placement of instru
mentation on the surface and to the thickness that is required for 
the simulation of a semi-infinite solid. From the solutions of the 
conduction problem, a number of temperature distributions were 
plotted in [(>]. An examination of these graphs indicated that for 
all the cases investigated, the effects of the cavity were confined to 
the region r/u < 4 and z/L < 2. For many cases, the region of 
influence of the cavity was substantially smaller. 

References 
1 Hottel, H. C , and Sarofim, A. F., Radiative Transfer, McGraw-

Hill, New York, 1967. 
2 Sparrow, E. M., and Cess, R. D., Radiation Heat Transfer 

Brooks/Cole, Belmont, Cal., 1966. 
3 Williams, C. S., "Specularly vs Diffusely Reflecting Walls for 

Cavity-Type Sources of Radiant Energy," Journal of the Optical So
ciety of America, Vol. 59, 1969, pp. 249-252. 

4 Winter, D. F., "Transient Radiative Cooling of a Semi-Infinite 
Solid With Parallel-Walled Cavities," International Journal of Beat 
and Mass Transfer, Vol. 9, 1966, pp. 527-532. 

5 Sparrow, E. M., Bifano, W. J., and Healy, J. A., "Efficiencies 
of Honeycomb Absorbers of Solar Radiation," NASA TN D-6337 
1971. 

6 Kruger, P. D., "Radiative Transfer in Cavities With Noniso-
thermal Walls," MS thesis, Department of Mechanical Engineering, 
University of Minnesota, 1973. 

7 Lin, S. H., "Radiant Interchange in Cavities and Passages With 
Specularly and Diffusely Reflecting Surfaces," PhD thesis, Depart
ment of Mechanical Engineering, University of Minnesota, 1964. 

20 / FEBRUARY 1974 Transactions of the ASME 

Downloaded 25 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



A. T. Wassel 

D. K. Edwards 
Professor. 

School of Engineering and Applied Science, 
University of California, 

Los Angeles, Calif. 

Molecular Gas Band Radiation 
in Cylinders 
The radiative heat flux in a molecular gas within a cylinder is formulated in terms of an 
axial band absorptance. The axial band absorptance function is used to reduce the two 
angular, one spatial, and one spectral integrals encountered to one angular and one spa
tial integral such as is encountered in radiative transfer problems with spherical symme
try1. A closed form is obtained for the axial band absorptance for the exponential-winged 
band model. Illustrative results are presented for a cylindrical gas volume with trapezoi
dal, parabolic, or Gaussian temperature profile. Mean beam length, absorptivity, and 
emissivity of a cylinder of gas are obtained as a function of the optical depth at the band 
head. 

Introduct ion 

Radiative transfer in a cylindrical gas volume occurs, for exam
ple, in the plume from a fire, chimney stack, cooling tower, or 
rocket engine. Radiation from hot gases in cylindrical configura
tions also occurs in gas turbine combustors, furnaces, and boilers. 
In addition to contributing to the major heat transfer to the walls 
of such chambers, the radiation significantly affects flame tem
peratures and, hence, nitric oxide emission levels. 

Usiskin and Sparrow [l]1 studied thermal radiation between 
parallel plates separated by an absorbing-emitting, nonisother-
mal, gray gas. Sparrow, Usiskin, and Hubbard [2] investigated 
radiative transfer in a nonisothermal gray spherical medium. Vis-
kanta [3] studied the interaction of conduction, laminar convec
tion, and radiation in a plane layer of a radiating fluid. A good 
review for the case of pure conduction (or laminar Couette flow) 
and gray radiation can be found in [4 and 5]. 

Einstein [6] considered radiant heat transfer in an absorbing-
emitting gray gas flowing within a black-walled cylindrical pipe. 
Nichols [7] studied the influence of the absorption of radiation on 
the temperature profile and heat transfer to an absorbing medi
um flowing turbulently in an annulus. DeSoto and Edwards [8] 
predicted the radiative interchange between a black tube and a 
nonisothermal nongray gas within the tube. DeSoto [9] investi
gated the coupling of radiation with conduction and convection in 
a nonisothermal, nongray gas flowing in the entrance region of a 
black-walled tube. Kesten [10] presented the equations for the 
spectral radiant heat flux distribution in an absorbing-emitting 
gas contained in a long cylinder whose internal surface is black. 
Viskanta and Merriam [11] investigated combined conduction 
and radiation between concentric spheres. Lamdram, Greif, and 
Habib [12] studied heat transfer in turbulent pipe flow with opti
cally thin radiation. Habib and Greif [13] investigated nongray 

1 Numbers in brackets designate References at end of paper. 
Contributed bv the Heat Transfer Division for publication in the JOUR

NAL OF HEAT TRANSFER. Manuscript received by the Heat Transfer 
Division July 20, 1973. Paper No. 74-HT-N. 

radiative transport in a cylindrical medium. Tiwari and Cess [14] 
studied heat transfer to laminar flow of nongray gases through a 
circular tube. The analyses of both [13 and 14] are based upon an 
approximation suitable only for the optically thick limit [15, 16] 
and are thus of questionable validity for a molecular gas having 
radiation transfer occurring in optically thin band wings. 

It is the object of this paper to transform the problem of deter
mining the local radiative flux in a cylinder to one very similar to 
finding the flux in a sphere, the latter problem being much sim
pler, because integrations are required over only one angular coor
dinate and the radial coordinate. It will be shown that the qua
druple integrals encountered in cylindrical gas radiation problems 
may be reduced to double integrals which involve a quantity de
fined as the axial band absorptance, which depends upon gas 
properties fixed by laboratory measurements of line-of-sight band 
absorptance. Closed-form expressions for this latter quantity will 
be obtained for cases when gas properties can be represented by 
the exponential-winged band model. 

Formulat ion of Radia t ive F lux 
The spectral radiative flux in the radial direction can be writ

ten in the following form [10, 13, 17] 

' / » = 4 / c o s y R . ( f l ) [Ds ( /' 
pkvdr' 

• sin y COS / 

- M . f R ^ ) ] + J 
pkvB 

COS", 

phy.dr' 

f r J>2 ( J 

f pb"dr' 
rsiny C O S } ' ' 

pkvdr" 

s i „ r C O S y " 

) dr< -- J 
pk,,B„ 
c o s y ' 

•r pk„dr" 

r> C O S T " 

plyJK 
COS } ' 

D,( ^K- ) dr'\ dy. 
cos -, 

)( /)• ' 

(1) 
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where 

Bjr') = • 
2 / ; r V 

,,ltcv/kT<r-) - 1 

cos-;' ' = [1 - (r/r'f s in 2 yj1 

= | l - ( r / r ' f s i n 2 r ] 1 

(2) 

(3«) 

(36) 

and 

D„(.x) = I c o s " " l a exp ( - si cos <s)rf« 
o 

= I j exp ( -x/p)dp. (4) 
' o (1 - )i ) 1 / 2 

The first term inside the curly brackets gives the wall radiation 
transmitted through the core and out through the /--surface less 
that transmitted through the outer shell into the r-surface. The • 
second and third terms give the radiation emitted in the gas and 
passing through the core out of the r-surface while the last term is 
that emitted by the gas in the outer shell and passing inward, 
through the r-surface (Fig. 1). 

Equation (1) is valid for an absorbing, emitting, nonscattering 
medium in local thermodynamic equilibrium bounded by a dif
fuse wall. If equations (3a) and (36) are introduced into equation 
(1) and the volumetric absorption coefficient, pk„, is assumed to 
be a weak function of temperature and position, the resulting ex
pression is (again see Fig. 1) 

q„(r) = 4 / c o s y 
' r = U 

\l„(R) [D3(pk„rcosy + pkvR[\ - (r/R) sin2y] ") 

- D 3 ( p M ? L l - (r/R)2 sin2 y j ' / 2 - pkvrcosy)} 

•'• ' U » / U ~ ( ' 7 V ) 2 sin2 y f 7 ? 

D , ( p / > V r ' [ l - ( r / V ) 2 s i n 2 y ] 1 / 2 

ph\r cos y)dr' 

Pkv 

" " " [1 - (r/r'f sin2 y}ln 

D2(pkvrcosy 

- P/V-'U - Wr>)> artr)*»w>-J* r r g f f i ^ w r j m 

D2(pkvr'[ 1 - ( r / V ) 2 sin2 y]1 n - pk„r cos y)dr'}dy. (5) 

Real gases radiate in discrete wave-number bands with essen
tially transparent windows separating the bands. Under the band 
assumption, the total radiative flux can be written as 

JV N 

f/(r) =Eqt(r) = S \ qv (r)dv , (6) 
( = l , = i A,t i 

where N is the number of bands of a given gas, and Ai>i is the 
band width. Under the assumption that the bands are narrow 
(that is, that the band-wing spectral decay width ut is small com
pared to the spectral separation between bands |», - i>j±i| and 
that the radiant intensity I/R) and the Planck black body inten
sity Be(r') do not vary greatly with v within a few w; of vy), the 
total flux of the ith band is given by 

< 7 i ( r ) = 4 / ' cosy{/„ (R){ f D3(pk„r cosy 
r = 0 ' 'an. 

+ pkvR[\ - (r/R)2 s i n 2 y } i n ) d v 

- / D 3 ( p M [ l - (r/R)2 sin2 y]1 n - pk„r cos y)dv } 

•rsinr [1 - (r/r'f sin2 y ] 1 / 2 

/ pk^pkyll - (r/r'f sirfy}^2 

+ pk\rcosy)dvdr' + J 
rsi»>[l -(r/r'f s in2 rW 

/ A , Pk»Di(Pk^ c o s y ~ Pk
v
r't1 - (r/r'f sin2 y]1 n)dvdr' 

i 

_ r* ^ 
' , [ 1 - (r/r'f s in2 y ] i /2 

j * pfc„D2(pfc„r'[l - ( r / r ' ) 2 s in2 y]1 / 2 

- pAvr cos y)dvdr' } dy. (7) 

To make this difficult and lengthy expression more convenient 
for use in engineering analysis, it is desirable to obtain closed-
form representations for the terms integrated with respect to v. 

•Nomenc la ture . 

A = band absorptance 
Aa* = axial band absorptance 

B = Planck black body spectral 
intensity 

B/ = first derivative of B with re
spect tor*' 

c = speed of light 
Dn = cylindrical exponential in

tegral function of order n 
E\ = exponential integral function 

of order 1 
h = Planck's constant 
I„ = spectral intensity of radiation 
j = integer = ±1 
k = Boltzmann constant 

k, = spectral absorption coefficient 
L = mean beam length 
N = number of bands 
q = radiative flux 

r', r" = local radius 

R 
T 
u 

7. 7 , 7 

7e 
Av 

dimensionless radius 
cylinder radius 
absolute temperature 
ratio of mean beam length to 

cylinder radius 

angle between a line of sight 
and a plane perpendicular 
to the axis of the cylinder 
measured in a plane parallel 
to the cylinder axis; also 
absorptivity 

band integrated intensity 
angle in the cross-sectional 

plane from the radial direc
tion to the projected line of 
sight 

0.5772156. . . 
band width 
emissivity 

Subscripts 

integer = ±1 
constant parameter 
dummy variable of integration 
wave number 
band head for the ith band 
integer = ±1 
3.1415927 
gas density 
Stefan-Boltzmann constant 
optical depth at band head 
bandwidth parameter 

center line 
ith band 
order of cylindrical exponen

tial integral function 
wall 
spectral 
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Deve lopment of the Ax ia l B a n d Absorptance 
The spectral absorption coefficient of many molecular gases can 

be represented, for heat transfer purposes, by the exponential-
winged band model [18, 19, 20, 21, 22]. For just-overlapped lines 
&„can be written as follows 

N 

kv=Tj v (8) 

K ^-exp[-(vi-u)/u>i] , v < vt , (9) 

where at is the integrated intensity of the ith band, u>, is the band 
wing decay width and vt is the band head. Let there be defined 
here 

A\,{(X.)=-

where 

/ {1 ~ Z Di(x t exp |' - (u, - i>)/u> t ])} dv, 

(10) 

—L f)R and r 
CO.-

r/R. ( I D ' R, i " i ' R, i 

The general form of f is 

r = T j rcosy + £r tj 1 - {r/y\f sin2 y]1 / 2 , 
where the parameters t; and £ take the values ±1 , and r\ is equal 
to either R or r' of equation (7). To simplify notation we define 

x'i,i = TR [( '"* ' ' ^ r * 2 s i n 2 y ) 1 / 2 -jr* cost] ; r* = r/R 

' (12) 
and we let the unprimed symbol x,-j denote the primed quantity 
with r*' = 1. Due to the complex cylindrical geometry the axial 
band absorptance retains one angular dependency, unlike the 
slab band absorptance [21]. 

With these simplifications both in concept (the introduction of 
A*aj) and in notation (the introduction of the x',.±i convention), 
equation (7) becomes 

q.(>•*) = Trio; f c o s y {/„ (R) \A*aii(xiitl) - A a * ; ( .v V l ) ] 
7 = 0 • 

- 1 d 

r* s i n y 
i ar*> A ,)V/r* 

d 
dv* 

7 U \ , , - ( - - v ' M ) l r f r * ' 

B, 
idr 

\A*a,i(x'u,/))dr*'}dy (13) 

It is often preferable to write the radiative flux in terms of A*a,i 
rather than its derivative. Such a form can be achieved by inte
grating equation (13) by parts and manipulating it to yield the 
following: 

<7,(r*)/w, =irf 
t i l 

:y {[/„ (R)-Bp (R) ][A*aii(xittl) 

-A^.iix,^)]- f B'v {!•*•) A*a,i(x'i,.i)dr*' 
r * s i n y * 

+ / B\ (r*')A*ai,(-A',.iitWr*' 
r*S iny i 

+• / B'v.(r*')A\,i(x'ii^)dr*']dy. (14) 

where 

B',t(r*') = ~\BV{(y*')] 

Fig. 1 The cylindrical geometry showing the complementary axial angle 
a and radial angle y 

tion (14) reduces to 

r / ;(r*)/c4 =nf ' c o s y ! / 1 B'vl(r*')A*a,,(x'UtAt!r*> 

J BV(i" ' )A* a , i ( .v ' ( , . iVfr* ' 
r * s i n y 

./' B\.(r*')A*ati(~x'u>l)dr*'}dy. (15) 

For black walls with no temperature jump (radiation slip), equa- The foregoing relations show that introducing the axial band ab-
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sorptance leads to a considerable simplification compared to 
equation (5) or (7) provided a closed-form expression for A*aj is 
found. The problem of evaluating the radiative flux is reduced to 
evaluating the double integrals of equation (15) instead of the 
quadruple integrals inherent in equation (1), which requires inte
gration over v, or in equation (7). which contains triple integrals. 
The problem is thus made similar to that of finding the radiant 
tlux in a sphere, but the axial band absorptance replaces the or
dinary line-of-sight band absorptance. 

Ax ia l B a n d Absorptance in Closed Form 
From the definition of the optical depth at the band head, T«,,, 

and the further definition of TI* as 

T,.* = exp [-{i/j - v)/w{\ , 

one can write equation (10) as follows: 

••' , 4 , dr * 

(16) 

(17) 

Introducing the first approximation into the analysis by affecting 
the following kernel approximation of the form suggested by 
HabibandGreif (13), 

in equation (17) allows one to write the following: 

A*a, ,(v,.) -- In (bXi) + Et(bx,) + y„ (18) 

where y«. is the Kuler-Mascheroni constant [23], 

(1 t)dL _ 
/ 

/ • " -t d l 0 . 5 7 7 2 1 5 6 . . . , (19) 

and K\(x) is the exponential integral function 

E, (x) (20) 

The quantity b used by Hahib and Greif [13| was 5/4. Some
what better accuracy is obtainable by using two values of b, as 
shown in the Appendix, one for small x, and the other for larger 
Xj. In this way two relations were found for A*a,i and patched to
gether at xi = 0.38: 

/!*„,( = ln(4.v j/ Ii) + E^xt/ir) + y,„ x, ?- 0 .3f 
(21 a) 

A*ati ---- In .V; + £ , ( 3 ^ / 8 ln2 - 1 / 2 , x{ > 0 . 3 8 

(216) 

T a b l e 1 C o m p a r i s o n b e t w e e n e x a c t n u m e r i c a l 
a n d a p p r o x i m a t e v a l u e s o f t h e a x i a l b a n d a b 
s o r p t a n c e 

X, 

0 . 0 1 
0 .02 
0 .03 
0 .04 
0 .05 
0 .06 
0 .08 
0 .1 
0 . 2 
0 . 3 
0 .4 
0 .5 
0 . 6 
0 . 8 
1.0 
2 .0 
3 .0 
4 . 0 
5 .0 
6 .0 
8 .0 
0 .0 

Exac t value 
0.012683 
0.025268 
0.037758 
0.05015 
0.06246 
0.07467 
0.09883 
0.12265 
0.23685 
0 .3436 
0 .4438 
0 .5380 
0 .6268 
0 .7902 
0 .9370 
1.4965 
1.8770 
2 .1588 
2 .3804 
2 .5623 
2 .8498 
3 .0729 

Approximate value 
0.012692 
0.025304 
0.037836 
0.05029 
0 .06266 
0 .07496 
0 .09932 
0 .12338 
0 .23931 
0.3484 
0 .4503 
0 .5418 
0 .6285 
0 .7890 
0 .9344 
1.4937 
1.8757 
2 .1583 
2 .3802 
2 .5622 
2 .8498 
3.0729 

Table 1 shows that agreement between values calculated numeri
cally and the approximate closed-form expressions in the forego
ing is excellent. 

Two applications of the axial band absorptance follow. 

Wall Radiat ive Flux 
Consider a hot gas enclosed by a black-walled pipe. The radia

tive flux at the wall is given by equation (15) with r* = 1, 
dBv -K ri 

r/iir* = 1) = 7Ta); 
dT 

COSy 
d 
dr 

rr T(r*') 

M*„, , -(-* ' , , , , ) -A*aii(x'u_t)}dr*'dy. (22) 

The temperature profile within the pipe can be written generally 

T-T0=[Te-T0]f{r*') (23) 
Consider the following specific profiles: 

(a) Trapezoidal profile, To = Tw 

f(r*') 

f(r*') = 1, f(r*') 

1 _ r* 

0 0 s 6* 

, fir*') 
1 

(24) 

1 - 5 * 5* 1 - 5 

(b) Parabolic profile, T„ = Tw 

f(r*') = 1 -r*'\ /"*(>•*') = - 2 r * ' 

(c) Gaussian profile, T0 = {Tu,e*">2 - Tc)/(e
1'*2 - 1) 

2 ) " 

,-*' £ 1 

fir*') f (>-*') =- „-<!"*' /Xi 

X'' 

(25) 

(26) 

If the profiles (24), (25), or (26) are substituted into equation 
(22), there results 

dB"t „ * / 2 ,1 

<dirR,i)/^^i zpr~('rc - Tw)) = I c o s y / 
" ' r = 0 s i n r 

iA*a,t(-*'i,.i) -^*a,iU'i,-Mf'(r*')dr*'dy (27) 

where fir*) takes the forms shown for the different profiles. 
Tables 2(a) and 2(6) show computed fluxes at r* = 1 as a func

tion TR (. They are useful, for example, in evaluating how much 
wall radiation is affected by departures from isothermal condi
tions within cylinders. 

M e a n B e a m Length , Emiss iv i ty , and Absorptivi ty 
Of use in analysis of radiant transfer from isothermal gas vol

umes, the mean band absorptance A, for a gas volume completely 
enclosed by a black wall is simply 

A = <lt,w/UBv (Te) - nB, (TK,)] (28) 
i i 

This quantity may be used to calculate total emissivity or ab
sorptivity by writing 

e a r . 1 = EAinB„ (Tc) (29) 

« o T „ 4 =BA^K (T„ ) (30) 
i * i • 

It is common practice in engineering, e.g., [24], to estimate A, or e 
(or a) using the line-of-sight relation for the band absorption or 
the emissivity (or absorptivity), 

A, = Ai(E) 
and a single value of path length, called the mean beam length L. 
In actuality, in the cylinder, radiation on the wall is received 
from beams having path lengths ranging from zero to infinity. 

Equation (14) permits us to find an exact value of A, and hence 
L without difficulty. For the isothermal case B'„(,) = 0, and 

_ .* /2 
Ai='~oij A*ati{rR<i cos y) cos ydy (31) 

' o 
This expression with equation (21) substituted, was integrated 
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Table 2(a) Wall radiative flux, 
pera ture profile 

t r apezo ida l te rn-

0 .01 

0.02 

0.03 

0.04 

0 .05 

0 . 1 

0.2 

0.3 

0.4 

0 . 5 

1 . 0 

a * 
0 . 3 
0 . 6 
0 . 9 
0 . 3 
0 . 6 
0 . 9 
0 . 3 
0 . 6 
0 .9 
0 . 3 
0 . 6 
0 .9 
0 . 3 
0 . 6 
0 . 9 
0 . 3 
0 . 6 
0 .9 
0 . 3 
0 . 6 
0 . 9 
0 . 3 
0 . 6 
0 . 9 
0 . 3 
0 . 6 
0 .9 
0 . 3 
0 . 6 
0 . 9 
0 . 3 
0 . 6 
0 . 9 

Wall flux 
0.0092126 
0.012992 
0.017967 
0.018319 
0.025836 
0.035738 
0.027320 
0.038535 
0.053316 
0.036219 
0.051090 
0.070702 
0.045015 
0.063504 
0.087901 
0.087515 
0.12352 
0.17117 

16563 
0.23399 
0.32503 
23313 

0.32940 
0.45851 
0.29165 
0.41335 
0.57819 
0.34425 
0.48914 
0.68723 
0.54581 
0.77962 
1.11501 

0 

0 

2.0 

3.0 

4.0 

5 . 0 

10.0 

20.0 

30.0 

40.0 

5 0 . 0 

100.0 

a* 
0.3 
0.6 
0.9 
0.3 
0.6 
0.9 
0.3 
0.6 
0.9 
0.3 
0.6 
0.9 
0.3 
0.6 
0.9 
0.3 
0.6 
0.9 
0.3 
0.6 
0.9 
0.3 
0.6 
0.9 
0.3 
0.6 
0.9 
0.3 
0.6 
0.9 

Wall flux 
0.76844 
1.10880 
1.63194 
0.88060 
1.28264 
1.93709 
0.94549 
1.38728 
2.14255 
0.98706 
1.45628 
2.29266 
1.07505 
1.60725 
2.68991 
1.12093 
1.68745 
2.96334 
1.13645 
1.71461 
3.06783 
1.14425 
1.72827 
3.12187 
1.14894 
1.73649 
3.15462 
1.15837 
1.75294 
3.22049 

T a b l e 3 R a t i o o f m e a n b e a m l e n g t h t o c y l i n d e r 
r a d i u s f o r t h e e x p o n e n t i a l - w i n g e d b a n d m o d e l 
w i t h o v e r l a p p e d l i n e s 

Table 2(6) Wall 
Gaussian profiles 

radiative flux, parabolic and 

TR 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
2 
3 
4 
5 
10 
20 
30 
40 
50 

100. 

.01 

.02 

.03 

.04 

.05 

.1 

.2 

.3 

.4 

.5 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

Parabolic 
profile 

0.0099422 
0.019771 
0.029487 
0.039093 
0.048590 
0.094492 
0.17894 
0.25193 
0.31565 
0.37307 
0.59367 
0.84115 
0.96975 
1.04642 
1.09681 
1.20795 
1.26883 
1.28992 
1.30060 
1.30706 
1.32015 

Gaussian 
profile, X = ; 

0 .0083115 
0.016527 
0.024648 
0.032675 
0.040611 
0.078950 
0 .14941 
0.21030 
0.26300 
0.31037 
0.49184 
0 .69173 
0.79193 
0.84956 
0.88626 
0.96295 
1.00200 
1.01500 
1.02148 
1.02536 
1.03313 

numerically and the parameter 

u = L/R (32) 

was found from equating the result with 

Ai(uTRfi) = u>; [ l n ( « r R > j ) + Ex (mR)i) + >-,] (33) 

Table 3 shows the results for u. When TRJ goes to zero, u goes 
to the known result u = 2 [25], and when TR -* <», u goes the 
other limit 8e~ 3 ' 2 = 1.785 found by Tien and Wang [26]. 

S u m m a r y and Conclus ions 
The axial band absorptance for a molecular gas having vibra

tion-rotation spectra according to the exponential-winged band 
model has been developed. Approximate closed forms have been 
derived and shown to compare well with exact values. With the 

TR 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
2. 
3 
4. 
5. 
10. 
20. 
30. 
40. 
50. 
00. 

.0 

.01 

.02 

.03 

.04 

.05 

.1 

.2 

.3 

.4 

.5 

.0 

.0 

.0 
,0 
.0 
.0 
.0 
.0 
0 
0 
0 

u 
2.0 
1.9992 
1.9984 
1.9976 
1.9968 
1.9960 
1.992 
1.984 
1.950 
1.925 
1.907 
1.858 
1.818 
1.802 
1.795 
1.792 
1.787 
1.785 
1.785 
1.785 
1.785 
1.785 

Band absorptance 
A,(L)/oiL 

0.0 
0.01989 
0.03957 
0.05904 
0.07830 
0.09736 
0.1897 
0.3606 
0.5095 
0.6439 
0.7670 
1.2564 
1.8742 
2.2656 
2.5487 
2.7697 
3.4601 
4.1526 
4.5580 
4.8456 
5.0687 
5.7618 

axial band absorptance, the problem of evaluating radiative heat 
flux in a cylinder is formulated as for the sphere, but the axial 
band absorptance replaces the ordinary line-of-sight band absorp
tance measured in the laboratory. 

The axial band absorptance was used to derive the radiative 
flux at the wall of a cylinder containing a gas with trapezoidal, 
parabolic, or Gaussian temperature profiles. Mean beam length, 
absorptivity, and emissivity were shown to be easily found as a 
function of the optical depths at the band heads based on the cyl
inder radius, TR.I, for exponential-winged bands with overlapped 
lines. 
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APPENDIX 

Exponential Kernel Approximations for Dn(x) 
Members of the set of functions 

Djx) S / ' ^ ' ^ ) i / 2 <,-<*/»> dii , n = 1, 2, . . . (34) 

have the following properties: 

d D„(x)=-D„_i(x) n > 1 (35) 

fln.t(.r) = ,f D„(x)dx (36) 
r 

Dt(Q) = TT/2 , £>2(0) = 1, D3(0) = TT/4,. £>,(0) = 2/3 (37) 

(38) 

(39) 

Let D„(x) be approximated by 

D„(x) ~ ae-bx 

Taking the zeroth moment of both sides gives 

/' D„(x)dx = [ ae-bxdx 
' v ' o 

fl„,,(0) ~a/b 

Taking the first moment similarly gives 

j" xDn(x)dx = f xae-bxdx 
ii ' (i 

D„t2(0) = n/b2 

The exact values of Dn(0), equation (37), and the two relations, 
equations (39) and (40), serve to fix values of a and 6, if one 
chooses a value of n. 

Choosing n = 1 yields a = 4/TT and b = 4/w. Equation (36) ap
plied two successive t imes yields 

03 U) = (!r/4Ku/"H' (41) 

Comparison of Ds(x) with values obtained from numerical inte
gration of equation (34), tabulated in Table 4, shows good agree
ment at low x, but they differ somewhat at higher values of x. 

Choosing n = 2 yields a = 37r2/32 and b = 3*78. Equation (36) 
then gives 

(40) 

D,lx) = ~e-^'^ (42) 

At larger values of x this relation agrees better with exact 
values than does equation (41), but equation (41) is superior at 
low values of x. 
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Total Band Absorption Models for 
Absorbing-Emitting Liquids: GCI 
Predictions of the total band absorption are useful for describing the absorption process 
in calculations dealing with radiation interaction in absorbing-emitting liquids. Two 
two-parameter models, similar to the Elsasser and the statistical narrow band models 
used in gas radiation work, are developed for predicting the total band absorption in 
regions of the liquid CCU spectrum. The parameters, which are considered to be ad
justable, can be determined from experimental total band, absorption data or, if available, 
basic spectroscopic information. Results from the models are compared to experimental 
total band absorption measurements for CCk as well as a prediction based on spectral 
integration. 

Introduction 

IT HAS BEEN POINTED out in recent investigations 
[1-5]2 that radiative transfer can have a significant effect on heat 
transfer in weakly absorbing liquids. This effect is important 
not only in normal heat transfer situations but is especially im
portant in the experimental determination of the thermal con
ductivity of an absorbing liquid. The majority of the prior 
studies [1-4] have been slanted toward the latter objective which 
is the determination of an effective conductivity. Schddel and 
Grigull [1] studied the interaction of radiation with conduction 
in a horizontal liquid layer heated from above. Data obtained 
with a Mach-Zehnder interferometer and a calorimetric method 
were compared to an approximate analysis due to Poltz [2] 
based on an effective absorption coefficient reduced from trans
mission data. Agreement between experiment and theory was 
fair. Poltz [3] and Poltz and Jugel [4] experimentally examined 
the same problem obtaining an effective conductivity for a 
number of liquids. Novotny and Bratis [5] investigated the 
use of basic spectroscopic information, such as band intensities, 
band widths and band shapes, to theoretically predict the inter
action of radiation with conduction in a liquid CO., layer. I 'e-
sults were obtained for the experimental conditions reported in 
references [1, 3], I t was found that the effect of radiation could 

1 Sponsored by the National Science Foundation under Grant GK 
20382. The third author also received summer support under Grant 
GY9898. 

2 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division of THE AMERICAN 

SOCIETY OF MECHANICAL ENGINEERS and presented at the ASME-
AIChE Heat Transfer Conference, Atlanta, Ga., August 5-8, 1973. 
Manuscript received by the Heat Transfer Division April 23, 1973; 
revised manuscript received May 31, 1973. Paper No. 73-HT-7. 

be satisfactorily predicted if certain band shapes were used in 
the analysis [5]. 

Examination of the literature reveals that very little basic 
spectroscopic information exists for absorbing liquids. This is 
clearly brought out when one examines the case of CCb. Al
though the absorption spectrum of CC14 is probably better 
known than the spectrum of any other liquid, it is still necessary 
to estimate a large number of the spectroscopic parameters from 
meager information [5]. This does not even account for the fact 
that the true shape of the absorption bands is unknown. Since 
information such as band intensities, band widths, and band 
profiles is very difficult to obtain in the laboratory, it was decided 
to try to develop an analytical approach based on rather simple 
laboratory measurements. 

The radiation term in the governing energy equation for heat 
transfer processes can be formulated in terms of the total band 
absorption (o, 6, 7]. The approach used in Novotny and Bratis 
[o] was to determine the total band absorption as a function of 
distance in selected regions of the spectrum from band intensities, 
widths and profiles. Here, two two-parameter band models 
are developed for the total band absorption; experimental total 
band absorption data then provide the means for determining 
the two adjustable parameters in the models. This approach 
requires very little expertise in spectroseop.y; experimental total 
band absorption data are rather easy to obtain in the laboratory, 
at least to the degree of accuracy needed for heat transfer calcu
lations. 

The band models are an Elsasser-type (regular) model and a 
statistical-type (random) model both based on an exponential 
profile; these models have been extensively used in gas radiation 
work [8].3 Comparisons between the results of [5] and the 
approximate models are presented for the total band absorption 

3 For gas radiation predictions, these models are based on the 
Lorentz profile. 
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Table 1 Band Data CCI, (293K) 

Region 
(cm"1) 
285-400 

400-690 

(590-900 

900-1350 

350-1700 

700-3300 

Center 
((.'in -1) 

320 
493 
o33 
569 
62S 
7(52 
784 
979 

1004 
1067 
1108 
1214 
1247 
1530 
1850 
2015 
2340 

Intensit 
(cnr""2; 

60 
54 
21 
12 
84 

377,000 
496,000 

770 
880 
340 
140 
760 
800 

5640 
60. 
46. 

188 

V 

l a ) 

4 
2 
8 
2 

4 
2 

Ilalf-Widll 
(em-1) 
]1.0<"> 
n.0 '»> 
12..V°> 
12.5<"> 
8.0'"> 
9.2 

11.0 
12.0 
13.0 
12.5 
12.5 
16.5 
13.0 
33.5 
30.0'"> 
18. (.)<"> 
40.0<"> 

"'Estimated value. 

than the case of using the Gaussian profile for the 12.8 fim region 
and a Lorentz profile for the remaining bands. 

The basic exponential profile is given by 

HU = ; • exp 
2 a 

\01 — tOoj 

a m 
where S is the line (band) intensity, a the line (band) half-width 
and too the location of the center of the profile. Incorporating 
this into an Elsasser-type band model one obtains 

= £.^e X p \oi-ncl] 

a (3) 

where n = 0, ± 1 , ± 2 , — . The average absorption of this band 
model is then evaluated by integrating equation (1) with respect 
to to from — \ 2 (/ to V 2 d 

A = 1 - J"" 
Jo 

3xp [ - f(n)]dn (4) 

and the first derivative of the band absorption with respect to 
path length. To help substantiate the use of the exponential 
profile, total band absorption data for CCI4 are also compared 
to the analytical results. 

Analysis 
The total band absorption is given by 

A,(L) = f ( l - e x p ( -1 jA]dw (1) 

where Aw,- refers to fth portion of the spectrum and xa takes into 
account the contribution in the 7th region of all bands in the 
spectrum. For discussion purposes, the pertinent band data for 
CCh used in l">] are given in Table 1. From these data, it is 
obvious that one can not separate the spectrum into sections 
treating each band individually with no overlap. Thus an 
analytical model must not only take into account the proper wing 
behavior [5] but also the overlap between bands. To accom
plish this without specifying the basic properties for each indi
vidual band, models similar to the Elsasser (regular) model and 
the statistical (random) model are used. The use of a model 
represented by a set of lines (bands in this case) of equal intensity 
and half-width does not represent the exact details of the absorp
tion process but should give the characteristic behavior of the 
total band absorption. 

The basic Elsasser model [S] originally developed for spectral 
lines uses the Lorentz distribution. In [5], it was found that the 
12.8 nm doublet could not be represented by the Lorentz profile; 
the wings of a Lorentz representation incorrectly overwhelms the 
rest of the absorption spectrum. Although it has been suggested 
(see reference [5]) that the shape of the 12.8 fim doublet is Gaus
sian, good agreement between analytical results and existing 
heat transfer data was obtained using an exponential distribution 
for each band in the spectrum [.">]. The agreement between 
experiment and analysis for the exponential profile was better 

where B = —, i) = — and 
a a 

J(V''i 
SL c^11^ - f e<i~"~2)-'>1 

dS 1 - e~7-^ 
(5) 

The total band absorption in a given region Aco; of the spectrum 
is given by .4, = A Ato,. 

Equation (5) for the average absorption is a function of two 
parameters .8' (/ and 8. These parameters are considered to be 
adjustable and to be determined in selected regions of the absorp
tion spectrum from experimental data. In the small path-length 
limit, equation (4; reduces to the linear limit 

A = 
SL STL 

S 

6 

This limit allows t he determination of - (or ST 1 from experimental 
a 

data in a given region Ato, of the absorption spectrum. The 
remaining parameter 8 can be determined by matching equation 
(5) to experimental data at a path length beyond those for which 
equation (0) is valid; a best value of 8 can be found by system
atically matching t he data to equation (5). 

The alternate band model is the random or statistical model 
[9]. This model here is constructed from a set of equally in
tense lines (bands in this case) randomly distributed. The 
average absorption for such a set of lines (bands) is given by [9] 

A = 1 - exp (T) 

where il is the average line (band) spacing and A L h the absorp
tion for a single line (band). Equation (7) with the definition 
of A 1, applies to lines (bands) of any shape as long as they are 
of equal intensity and the number of lines (bands) approaches 
infinity along with the frequency interval. The absorption for 
a single exponential line (band) is given by equations (1) and 
(2) where the interval Ato is allowed (0 approach infinity. The 

.Nomenclature-

A, == total band absorption, /th region 
A = dimensionless total band absorp

tion, At, Ato, 
AL = absorption for a single band 

d = band spacing 
/ = function defined by equation (5) 
L — path length 

& 
ST 
a 
8 

summation index 
band intensity 
total band intensity in region Ato; 
band half-width 
line width to spacing parameter, 

2a/d 
Filler's constant, 0.5777— 

Tj = wave number parameter, 2o)/d 
xu = absorption coefficient 
to = wave number 

Subscripts 

( = (th region of spectrum 
j = jih band 
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resulting expression for A L is the same expression used by Ed
wards and Menard [10] for the total band absorption in com
pletely pressure-broadened gases.4 There exists a number of 
closed-form expressions that could be used for AL; for example, 
one could use the formulations given in [11, 12, 13] for gases in 
the pressure-broadened limit. 

The expression given in [11], which also results from the inte
gration of equation (1) for an exponential line (band) over an 
infinite frequency interval, is chosen for this work 

2a KI)-(S) + 7 (8) 

where y is Euler's constant (0.577—) and Et is the exponential 
integral. The total band absorption averaged over the region 
Aco of the spectrum is then given by 

A = 1 - e x p { - 8 E, + ln + 7 (9) 

As before, this model has two adjustable parameters -7 and B. 
a 

The - is obtained as in the Elsasser-tvpe model from the linear 
d 

absorption region whereas B is determined in the absorption 
region beyond the linear region. It should be mentioned that 
equations (4) and (9) reduce to the correct limits for limiting 
values of B and SL/d. 

These models have a definite advantage over the top hat or 
box model (constant x„ in a given region) in that the box model 
does not allow for overlap and, therefore, overestimates the 
absorption at intermediate optical depths. I t should be noted 

S 
that the box model has onlv one adjustable parameter - which 

it 

should be obtained from the linear absorption region. 

Experiment 
Although the analysis presented here could be compared to the 

total band absorption obtained analytically in reference [5] 
instead of experimental data, it is still necessary to verify the 
correctness of not only the approximate models but also the expo
nential profile. The only prior indication of the exponential pro
file satisfactorily representing the band absorption in liquids is 
a comparison with experimental heat transfer data [5] ; this is 
not a very sensitive test of the correctness of the profile. 

To this end, the total band absorption of CC14 was measured; 
results in the wave number range 900-3300 c m - 1 are presented 
here. The data were obtained with a Model 21 Perkin-Elmer 
spectrophotometer with a NaCl prism.5 A sealed-demountable 
type cell was used for path lengths of 17 to 158 /im, whereas a 

variable spacing cell was used for path lengths in the range of 
0.2 to 0 mm. The demountable cell was calibrated according 
to the method of Smith and Miller [14]; cell depth readings were 
taken directly from the micrometer head on the variable cell. 
A slit program recommended by the manufacturer for resolution 
work was used in obtaining the data; the automatic slit program 
gives approximately constant resolution. It shoidd be noted 
that the integrated band absorption given by equation (1) is 
quite insensitive to slit width [Jo]; the instrument slit widths 
used here are thought to be in a range such that slit corrections 
are unnecessary. The carbon tetrachloride was a spectrophoto
metries grade manufactured by J. B. Baker Co. 

Once the absorption spectrum was obtained, the area under 
the absorption curve was measured with a planimeter.6 The 
spectrum was broken up into the regions indicated in Table 1. 
This division is somewhat arbitrary; however, it does correspond 
to the calculations carried out in reference [5]. The base line 
and scale was determined from the 100 percent to 0 percent 
transmission lines, respectively. Except for a few isolated points, 
the data show a maximum scatter of about ± 1 0 percent; this 
was determined by completely repeating a run. 

Results and Discussion 
Since experimental data were not obtained for all spectral 

regions, it was decided to also determine the adjustable param
eters S'd and 'laid from the spectral integration results of [5]. 
The limited experimental results then serve as a check on the 
validity of the exponential profile. Discussing the spectral 
ingegration matching first, the values of S/d were obtained from 
the linear absorption region. Both the regular and random 
models reduce to A = (S/d)L in the linear limit; thus the values 
of S/d are the same for both models. Table 2 presents the best 
values of S/d. for the six regions of the spectrum used in [5]. I t 
should be noted that these are slightly different from the values of 
ST/Aw given in Table 1; the difference is due to overlap between 
regions. 

The best line width to spacing ratio for each region is deter
mined by systematically matching the all exponential profile 
results of [5] at numerous values of L. It is felt that a great deal 
of accuracy in the choice of 8 is not needed for purposes of heat 
transfer calculations. The values of 8 for both the random and 
regular models are also given in Table 2. As expected from the 
behavior of models [9], the values of 8 for the random model are 
larger than those for the regular model in the equivalent region. 

Figs. 1-3 present comparison between the spectral integration 

6 Since the output of the Model 21 used here is linear in wavelength, 
the absorption curves had to be transferred to a linear wave number 
scale. 

Table 2 Band Parameters 
integration results [5] 

CCU ( ~ 3 0 0 K ) ; Determined from spectral 

Region 
(cm-1) 
285-400 
400-690 
690-900 
900-1350 

1350-1700 
1700-3300 

(S/d), 
Regular 

0.51 
1.02 
4166 
8.40 

16.0 
0.196 

cm ' 
Random 

0.51 
1.02 
4166 
8.40 

16.0 
0.196 

(2a/d) 
Regular Random 

0.17 
0.20 
0.13 
0.19 
0.18 
0.11 

0.30 
0.40 
0.21 
0.47 
0.41 
0.15 

3 
4 The parameters A.o and Co2 in [10] are replaced bv a and —, 

2a 
respectively. 

5 With some difficulty, the spectral region could have been ex
tended to lower wave numbers with prism interchanges. Although 
some data were obtained down to about 650 cm "', it was felt that the 
spectral regions above 900 cm-1 were sufficient for the purposes of this 
manuscript. All results were obtained for T ~ 300K; a temperature 
dependency study is beyond the scope of this manuscript. 

Fig. 1 Total band absorption versus path I 
4 0 0 a n d 6 9 0 - 9 0 0 c m " 1 

spectral region 
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Spectral Integration [5 ] 

A Random Model 

o Regular Model 

T x 300K 

Table 3 Band Parameters CCI4 ( ~ 3 0 0 K ) Determined from experimental 
data 

1.0 10 
L, mm. 

1000 

Fig. 2 Total band absorption versus path length; spectral regions 4 0 0 -
690 and 9 0 0 - 1 3 5 0 cm" ' 

Fig. 3 Total band absorption versus path length; spectral regions 1 3 5 0 -
1700 and 1 7 0 0 - 3 3 0 0 cm ~l 

results of [.">] using all exponential profiles and the approximate 
models. To clearly show the small differences between the 
analyses, it was necessary to violate the usual practice of pre
senting an analysis by a line and data by points. The regular 
and random model results tire presented in the figures as open 
points. The agreement between the analyses is excellent. The 
random model has a slight tendency to overestimate the spectral 
integration results at intermediate optical depths and to under
estimate the absorption at. large optical depths. This, of course, 
is somewhat due to the manner in which /3 was determined. The 
regular model tends to saturate at smaller optical depths than 
the spectra! integration or random model results. The differ
ences between the analyses a re slight. 

Since the differences between the analyses are slight, the data 
will only be matched to the random model. The values of S:d 
and 0 are determined from the data in the same manner as 
described in the previous paragraphs; Table 3 presents the best 
values of iS d and 3. Although there is a lack of data for /, > 
6mm in the 1700-3300 c m - 1 region, the path lengths aresulliciently 
large enough for the absorption to be sensitive to the choice of (i. 
The random model as well as the spectral integration results of 
[5] tire compared to the data in Fig. 4. The data are correlated 
very well by the adjustable band model. Considering the ap
proximate methods used in determining the band information 
given in Table 1, the agreement between the spectral integration 
results of [.">] and the experimental data is excellent. A slight 
change in band intensities and band widths used in the spectral 
calculations accounts for the majority of the differences shown in 
the figures. If the Lorentz profile were used in the calculations 
(12.S jum band (iaussian) rather than the exponential shape, the 
dimensionless band absorption Ai-Aw,- would approach one at a 
smaller value of L than the exponential profile results. This 

Region 
e m - 1 

900-1350 
1350-1700 
1700-3300 

R< 
S/d, e m - 1 

8.34 
11.4 
0.225 

tndom 
2 cx/d 
0.38 
0.19 
0.23 

behavior is not exhibited by the experimental results thus lending 
support to the conclusion drawn in [5] that the exponential 
profile is more representative of the actual absorption process. 

A quantity which is often used in heat transfer calculations is 
the derivative ilA/dL [5, 6, 7]. To properly predict temperature 
profiles in a radiation interaction problem, a realistic representa
tion of ilA/dL is required. Figs. 5 and 6 present the derivative 
of the total band absorption with respect to path length for the 
absorption results shown in Figs. 1 to '•'>. Considering the sensi
tivity of the comparisons, the agreement is excellent. The 
regular model, because of its tendency to saturate at a smaller L 
overestimates the derivative at the larger optical depths shown 
in the figures; the random model is a better representation of the 
spectral integration results.7 

As in the case of gas radiation, it is extremely useful to have cor
relations for the total band absorption for input to heat transfer 
calculations. Reference [7] has shown that it is absolutely 

7 The derivative for the regular model in the 090-900 cm - 1 region 
approaches zero at a much faster rate than the other results; this 
behavior would also be evident for the other regions at values of L 
greater than those shown in the figures. 

: 
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1.0 10 
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100 1000 

Fig. 4 Comparison of experimental data to the random model and the 
spectral integration results of [5 ] 

1000 

Fig. 5 Derivative of band absorption with respect to path length; spectral 
regions 2 8 5 - 4 0 0 , 4 0 0 - 6 9 0 , and 1 7 0 0 - 3 3 0 0 cm - 1 
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4 io~ 3 io~2 :o~'" i,o io IOO 

I0~2 I0 _ i t.O i 0 l 0 ° l 0 0 ° 
L , mm. 

pig, 6 Derivative of band absorption with respect to path length; spec
ia l regions 6 9 0 - 9 0 0 , 9 0 0 - 1 3 5 0 , and 1 3 5 0 - 1 7 0 0 cm _ 1 

necessary to properly represent the wing behavior of the absorp
tion bands in these calculations; for example, the top hat and 
gray models do not even properly represent trends in gas work. 
In liquids and gases, these correlations can be built from basic 
spectroscopic information on the behavior of x 0 ; however, this 
information is not generally available and very difficult to obtain 
in the laboratory. To this end, useful correlations have been 
developed based on total band absorption data which are much 
easier to obtain in the laboratory than xa information. Here, 
two models for the total band absorption in liquids have been 
suggested. Using liquid CC14 as an example, the results indicate 
that both models should be of sufficient accuracy for heat transfer 
calculations [5]; the random model better represents the spectral 
results and because of its closed form it might be simplier to use 
in some situations. 
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Thermal Radiation in Laminar Boundary Layers 
on Continuous Moving Surfaces 
Thermal radiation heat transfer is studied in boundary layers on continuous moving 
surfaces. An analytical study is performed for two-dimensional laminar flow of an 
absorbing and emitting fluid. Solutions were obtained for limiting conditions of opti
cally thin and thick boundary layers. Comparisons indicate that the radiation flux in 
these boundary layers is less than that for flow over semi-infinite flat plates for optically 
thin flows. The radiation contribution becomes more nearly equal as optical thickness 
increases. 'The normal velocity induced, in the free stream by the wall motion sig
nificantly affects the radiation heat transfer. 

Introduction 

w, hiK\ A MKTAI, SIIKKT is extruded continuously from 
a die or rolling mill into a fluid, the (low situation in the surround
ing fluid is referred to as a boundary layer on a continuous moving 
surface. This How situation is shown in Fig. 1. A similar flow 
condition can be shown to occur on the wall of a shock tube be
hind the shock wave. In Fig. 1 the vertical wall would coincide 
with the shock wave and the continuous moving surface with the 
shock wall. 

Mirels [ l p first considered t he flow and convert ive heat transfer 
on the wall behind a shock wave and Sakiadis [2, '•'>, 4] considered 
the flow on flat plates and cylindrical filaments during extrusion. 
Eriekson, Fan, and (,'ha [~>] and Tsou, Sparrow, and Goldstein 
[6] studied the heat transfer characteristics of the continuous 
moving flat plate. 

For laminar two-dimensional steady flow on a continuous mov
ing surface, the boundary layer flow equations reduce to the 
Biasius equation which was derived for the semi-infinite flat plate. 
The boundary conditions for the continuous moving sur
face are a uniform velocity V at the surface; and in the present 
study, the free-stream horizontal velocity component is assumed 
zero. The assumption of zero free-stream horizontal velocity is 
certainly valid for extrusion problems; however, in shock tubes 
the assumption is only valid for strong waves. Convective heat, 
transfer results for laminar flow on continuous moving surfaces 
were obtained by Tsou, Sparrow, and Goldstein lb] and Rhodes 
and Kaminer [7J. 

1 Presently Graduate Student at t niversify of Kentucky. 
2 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division for publication (without 

presentation) in the JOUKNAI. OF HKATTHAXSI'BU. Manuscript re
ceived t>v the Heat Transfer Division September", 1972. Paper No. 
73-HT-X. 

The present study considers the effect of thermal radiation heat 
transfer on a continuous moving surface in an emitting and ab
sorbing media. Thermal radiation can be important since, in 
many applications, the fluid and/or surface is at high temperature. 
The effect, of thermal radiation on the temperature distribution 
and heat transfer is determined for an optically gray, nonscal-
tering fluid near thermodynamic equilibrium. Steady laminar 
flow is studied and solutions are obtained for the limiting condi
tions of optically thin and thick boundary layers. Radiant heat, 
transfer characteristics of flow over semi-infinite flat plates with 
optically thin and thick boundary layer are compared with these 
results. The limiting conditions of optically thin and optically 
thick boundary layers are studied in order to obtain results 
which can easily be compared with results presently available 
for the semi-infinite flat, plate. Although computer techniques 
are available to obtain solutions for general optical thicknesses, 
the purpose of this paper is to apply the limiting techniques de
veloped for the semi-infinite fiat plate to the continuous moving 
surface. This allows a reasonably accurate solution in a some
what simplified form and also we can compare the characteris
tics of the continuous moving surface with those of the semi-
infinite flat plate. We will first present the optically thin anal
ysis and results followed by a similar presentation of the optically 
thick case. 

i I i I 1 _ -—i 

o- t 
I ~ - < — 

Fig. 1 Boundary layer on a continuous moving surface 
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Optically Thin Boundary Layer Analysis 
The optically thin approximation has been applied to boundary 

layer heat transfer on semi-infinite flat plate by several authors; 
for example, Howe [8], Koh and J)e Silva [9], and Cess [10]. 
The first, two papers assumed that the boundary layer emits but 
does not absorb thermal radiation. The latter paper, however, 
included first-order interaction effects between convection and 
radiation with emission and absorption in the boundary layer. 

The analytical technique used in the present analysis assumes 
that the radiation interaction within the boundary layer can be 
neglected. Radiation passes through the boundary layer unaf
fected by the fluid present. Adjacent to the boundary layer is a 
radiation layer whose thickness is large compared to the bound
ary layer. In the radiation layer thermal conduction is neglected 
but convection which is induced by the boundary layer flow is 
included. 

A nonconducting fluid is assumed having a velocity equal to 
that at the outer edge of the boundary layer. Since the hori
zontal velocity component is zero, the normal velocity com
ponent induced by the moving plate cannot be neglected as in 
the case of flow over a semi-infinite Hat plate. The normal ve
locity relation was determined by Sakiadis [3J and i.s given by 

iv, = -0.8{>8(r ,Vx)- (1) 

The velocity is seen lo be negative and decreases with distance 
from the origin. In this analysis we assume constant properties; 
however, the results are equally applicable to an ideal gas where 
pp., pk, and K,'p are constants. 

The free-stream temporal lire is equal to TV outside the radia
tion layer and (lie wall temperature is equal to TV Longitudinal 
radiation and viscous dissipalion are neglected in the energy 
equation. The applicable form of the energy equation becomes 

pc,,v„ 
dT 

"dy 
(2) 

Although equation (2) only contains partial derivatives with 
respect to y, T is a function of x also since by equation (1), vm 

i.s a function of x. The thickness of the velocity boundary layer 
is small compared I o t he radial ion layer and t hus can be neglected. 

Although the optical thickness of the boundary layer i.s as
sumed small, the optical thickness of the radiation layer is 
assumed optically thick. This analysis applies to a shock tube 
only when the optical thickness across the tube diameter is large. 
The method applied is similar to that employed by Sparrow and 
Cess [UJ to determine radiant heat transfer from a semi-in
finite plate in an ideal fluid. A gray, nonscattering fluid and 
an optical!.)' black wall are assumed and Tl is linearized by ex
panding in a Taylor series about TV and retaining only first-
order terms. E(l) kernels are approximated by exponentials 
(i.e., Ei(t') ~ 2e^2i). With these approximations, the energy 

equation reduces to the third-order partial differential equation 
given by, 

d3d d2d dd 
- • - 2Z -• - 4 • - -
dr3 dr2 dr 

0 

where 8 i.s the dimensionless temperature 

6(x, y) = (7Y.r, y) - 7 ' J / (7V - Tw) 

(3) 

(4) 

In addition, r is the optical thickness, and 7, is a combination of 
Boltzman and Reynolds numbers given by 

Z 9.90Bo 'Re ' 

The independent variables in equation (3) are the dimensionless 
variables Re and r, which are functions of x and y, respectively; 
therefore, its solution gives (?(Re, r ) . .Since the coefficients of 
equation (3) are only functions of Z, if can be easily integrated, 
which yields the following general solution: 

6 = / i(Re) + e z r[/2(lie) exp (rVz*- + 4) 

+ / ; i(Re) exp (-TVZ- + 4)] (0) 

The functions /i(Re), /2(Re), and /3(Re) must be determined so 
that the solution satisfies the boundan < ondition, md the original 
integrodifferential equation used to deuve equition (3). Sub
stituting these conditions we obt un, 

0 = 1 - '/2{(Z + 2 - V z 2 + 4) 

exp [T(Z - Vz* + 4)J} (7) 

Equation (7) is the temperature distribution within the radiation 
layer. Setting r = 0 in equation (7) we obtain the temperature 
jump at the wall. Thus 

0(lte, 0) = ( V Z 2 + 4 - Z)/2 (8) 

Using equation (7) the wall heat flux within the boundary layer 
can be determined. Sparrow and Cess [11] show that 

cr(7\„ - 7 V 
2 j Mite, t)E,(i)(U 

Jo m 

Substituting the exponential approximation E-,(t) ^ : e~ 
equation (7) into equation (9) and integrating gives, 

qitw 

a(Tw TV) 
= %z - Vz-- + i)/(z V z 2 + 4) (10) 

The relative importance of radiation to the convection heat 
transfer can be determined by combining the radiation 
heat transfer result with the convective. The total heat transfer 
can be approximated by the sum of the convective and radiative 
transfer 

.Nomenclature. 

Bo = Bolfzmann number, p„cp?//o-TV3 

cp = specific heat at constant pressure 
E(t) = exponential integral 

/ = dimensionless Blasius stream func
tion 

k = thermal conductivity 
;V = dimensionless parameter, nk/Ao'I"' 

Nu = Nusselt number, q„x/k(Tw — TV) 
Rr = Prandtl number, cTp/k 

</ = heat flux 
Re = Reynolds number, Ux/v 

I = dummy variable of integration 
T = absolute temperature 
u = velocity component in ^-direction 

U — velocity of surface 
v = velocity component in ?y-direction 
x = coordinate along plate surface 
y = coordinate normal to plate surface 
Z = function defined by 9.90 B o - 1 

Re' / 2 

r\ = similarity variable, y'VU/vx 
d = dimensionless temperature (T — 

T'„)/(7V - TV) 
K = absorption coefficient 
p. = dynamic viscosity 
v = kinematic viscosity 
£ = dimensionless parameter, 2o7<7VW 

pCpU 

p = density 
<r = Stefan-Bolt zmann constant. 
r = optical thickness 
4> = dimensionless temperature, T/'T* 

Subscripts 

c = convection 
R = radiation 
w ~ wall 

°=> = free stream 

Superscripts 

* = reference temperature 
' = differentiation with respect to y 
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Fig. 2 Thermal radiation heat flux and temperature jump for optically 
thin boundary layers 

?i» = Qcw + QBta 

where qCV) is the convective heat transfer. From reference [6] we 
find that for Pr equal to unity and convection alone, Nu/V Re 
= 0.444. Combining convection and radiation heat transfer 
yields, 

Nu 

VSe 
= 0.444 + 4 TJ - TjJ 

(ffBo)-1Re'/' (11) 

By substituting equation (10) in the second term on the right of 
equation (11) and letting Pr = 1.0, the combined Nu/VRe can 
be determined. 

Optically Thin Boundary Layer Results 
The dimensionless wall heat flux and temperature are plotted in 

Fig. 2 as a function of Re'^/Bo. Near the origin where Re -»• 0, 
black-body radiation 

qnv, = <r(7V - TJ) 

is obtained but radiation exchange between fluid and surface 
decrease with distance from the origin. This characteristic can 
be explained physically by noting in equation (1) that the magni
tude of the normal velocity also decreases with the distance 
from the origin since v„ ~ x -»A Since the velocity component 
is negative, the free stream fluid is brought near the surface 
where radiation exchange is occurring. The magnitude of the 
velocity is higher near the origin; consequently, the fluid tem
perature is maintained more nearly equal to that of free stream. 

The combined wall convection and radiation heat transfer is 
given by_ equation (11) and is shown in Fig. 3. Although the 
Nu/VRe is constant for convective heat transfer, it is seen that 
the radiation may cause this parameter to change significantly. 
When Re'/'/Bo is greater than approximately 5.0, Nu/VRe 
remains constant at approximately 1.25. 

The radiation heat transfer characteristics of the continuous 
moving surface cannot be compared directly with those of the 
semi-infinite flat plate because the important parameters are dif
ferent. Rather than the independent variable Re'/'/Bo, the 
dimensionless parameter £ was obtained for a semi-infinite flat 
plate. These parameters can be related by introducing, for 
instance, the two additional parameters N and Pr. One can 
show 

Re'/yBo = (S/SiVPr)1/' 

We now have a relation between the parameters Re'/'/Bo and £ 
but have introduced the product of N and Pr. Fig. 4 shows the 
dimensionless heat flux now plotted as a function of £ with con
stant values of the product NPr. The dashed curve was deter-

Fig. 3 Heat transfer coefficient including radiation for optically thin 
boundary layers, Pr — 1.0 

-1 1 r-

Fig. 4 Comparison of temperature jump at surface of continuous moving 
surface with semi-infinite flat plate. Semi-infinite flat plate data is the 
dashed line and was given by Sparrow and Cess [11]. 

mined by Sparrow and Cess [11] for the semi-infinite flat plate 
and is applicable for all ATPr. Since N must be small for optically 
thin boundary layers [11], radiation heat transfer will generally 
be lower for a continuous moving surface than for a semi-infinite 
flat plate. A physical explanation for the difference is that the 
free stream flow on the semi-infinite flat plate is much larger and 
consequently, the fluid temperature remains near that of free 
stream. As JV increases the optical thickness of the boundary 
layer also increases and the radiation heat flux for the continuous 
surface and semi-infinite flat plate become more nearly equal as 
seen in Fig. 4. This characteristic is demonstrated further in the 
results for optically thick boundary layers, as will be seen later. 

Optically Thick Boundary Layer Analysis 
The opposite extreme to the weak interaction of radiation is 

that of fluids with intense absorption where the Rosseland formu
lation [13] is used to determine the radiant energy flux for this 
condition. Viskanta and Grosh [14] used this technique to 
study the temperature distribution and heat transfer during flow 
of an absorbing medium along a wedge. Their analysis included 
the zero wedge angle case, and these results will be compared 
with the continuous moving surface in the present study. 
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If radiation transfer in the z-direetion is neglected, then the 
radiant transfer by the Rosseland formulation is, 

qs = 
W<rTs bT 

3K by 
(12) 

Following the analysis of Viskanta and Grosh [14], the total heat 
flux can be expressed by an effective conductivity including con
duction and radiation. Thus 

= k + hR = k + 
16oT3 

3K 
(13) 

Substitution into the energy equation and simplifying one ob
tains, 

t(wwr + vyw = o (14) 

where the prime denotes differentiation with respect to r/ and 0 is 
a dimensionless temperature given by <f> = T/T*. The asterisk 
denotes a reference temperature; for example, the wall tempera
ture Tw or free stream temperature Ta. Properties are again 
assumed constant but results are applicable to ideal fluids where 
pp., pk, and n/p are constants. 

The dimensionless stream function / has already been deter
mined for the continuous moving surface by Sakiadis [3]. Due 
to the large difference in the shape of this curve from that of the 
semi-infinite plate used by Viskanta and Grosh [14], it was 
anticipated that the radiant heat transfer results for the con
tinuous moving surface would differ considerably from those 
of the semi-infinite flat plage. 

The radiative transfer term in equation (13) can be expressed 
in the dimensionless parameter N by 

hu/k = 1 + 403/3iV (15) 

The boundary conditions for equation (14) are 

T = Tw at 97 = 0 

T = Ta at v —• » 

Optically Thick Boundary Layer Results 
Numerical integrations of equation (14) using the digital com

puter were performed to find temperature distributions and heat 
transfer rates as a function of the parameter N. Prandtl number 
is assumed equal to one in all cases presented. Since the energy 
equation is nonlinear and no suitable dimensionless temperature 
was found that would have eliminated the specification of the 
particular values of <j>w and $ „ in the boundary conditions, solu
tions have been obtained for several values. Linearization can 
be performed by the method used in the optically thin boundary 
layer in the foregoing; however, the solution would suffer a loss of 
generality. 

Figs. 5 and 6 show the temperature distributions in the bound
ary layers for values of iV equal 0.1, 1.0, and 10. In Fig. 5 the 
values of 4>w and </>„ are 0.1 and 1.0, respectively; and conse
quently, the wall is cold compared to the surrounding fluid and 
T„ is the reference temperature T*. The values of 4>w and <j>„ 
are 1.0 and 0.1, respectively, in Fig. 6; and therefore, the wall 
temperature is higher than that of the fluid and now T* = Tv. 
Prandtl number is set equal to unity in all cases. The curves for 
N = 10 are approximately equal to those for infinite values of N. 
Radiation heat transfer decreases to zero as N —»• » since the 
fluid becomes opaque at large JV. 

The temperatures in Fig. 5 are very little different from those 
obtained by Viskanta and Grosh [14] for flow over a semi-infinite 
plate with the same condition present. However, the results ob
tained by Viskanta and Grosh for the conditions in Fig. 6 are the 
dashed lines and significant differences are seen between the 
semi-infinite flat plate and continuous moving surface. 

Since Prandtl number is equal to unity and the fluid becomes 
opaque at large values of N, the thermal boundary layer thickness 

is approximately equal to that of the velocity boundary layer a t 
JV = 10. As JV decreases, the radiation contribution becomes 
greater. Radiation heat transfer thus increases the thermal 
boundary layer thickness which is the same effect as a decrease 
in Prandtl number. 

The heat flux at the wall is the sum of conductive and radiative 
heat flux. For strongly absorbing medium the heat flux can be 
expressed as 

Qw = —i 
bT 

by 

WrT>ST 

3K by 
(16) 

Substituting equation (15) and <f> we obtain after rearranging, 

kT*VRe \ " N) bri\w 

We can further show, 

<2>»3\ b<t> 

W - 4>J \ '' N ) N J by 

(17) 

(18) 

1 1 

// 

1 
1 

1 

1 1 

' S^ V - N = l 
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Fig. 5 Temperature as a function of TJ for Pr = ].0,<f>w = 0 . 1 , a n d 0 „ 
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Fig. 6 Temperature as a function of i; for Pr = 1.0, (j>w = 1.0 and 0 „ = 
0.1 on a continuous moving surface and semi-infinite flat plate. Semi-
infinite flat plate data is the dashed line and was given by Viskanta 
and Grosh [14] . 
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Table 1 Heat transfer results for optically thick boundary layer on 
continuous moving surfaces 

(a) Cool wall (<£«, = 1.0,01? = hv/TJ 

N 
10. 

1.0 
0.1 

N 
10. 

1.0 
0.1 

4>w = 
qx 

kTaVRe 
- 0 . 4 0 2 
- 0 . 4 2 0 
- 0 . 6 7 7 

= 0.1 

Nu/VIle 
0.446 
0.466 
0.752 

(b) Hot Wall (</>„, = 1.0, 

4>„ = 

/t/TnVJIe 
0.409 
0.473 
0.693 

0.1 

Nu/ 'VRe 
0.455 
0.526 
0.770 

<t>w = 

^ 7 ' ^ v R e 
- 0 . 2 2 5 
- 0 . 2 5 0 
- 0 . 5 2 5 

*- = TJTW 

._JE._.. 
MVVRi 

0.22H 
0.273 
0.507 

0.;> 

N u / V R e 
0.450 
0.500 
1.05 

0.5 

Nu/VKe 
0.456 
0.546 
1.01 

Table 1 lists the heat flux results given by equations (17) and 
(18) for cool and hot wall conditions. It is seen that for .V = 10, 
the radiation transfer is small but as N decreases the radiation 
becomes more important. This effect is illustrated in Fig. 7 
where Nii/"VI!e is plotted as a function of N for the cool wall 
conditions. 

Discussion 

The normal velocity component induced in the surrounding 
fluid by the surface motion contributes appreciably to the radia
tion heat transport. Since the velocity component normal to the 
•surface is toward the plate, the free stream fluid flows toward 
the surface where radiative is more important. The radiation 
heat flux at the wall of a semi-infinite flat plate also decreases 
with distance from the origin but the reduction results from a 
continual heat exchange between the fluid and wall as the fluid 
flows horizontally over the plate. 

An error analysis has not been performed fait it is expected that 
the results are of the same accuracy as those obtained for the 
semi-infinite flat plate using the same techniques. Viskanta [16] 
compared the optically thin and optically thick analysis of the 
semi-infinite flat plate with the exact results obtained by Zamur-
aev [17]. It was concluded that the thin gas analysis is valid only 
for £ < 0.1 and the total heat flux values predicted by the thick 
gas analysis is within 10 percent of the results of Zamuraev 
for all conditions compared. Similar comparisons would be ex
pected for the results presented here for the continuous moving 
surface. 

We have assumed a uniform free-stream temperature and a 
negligible radiation parallel to the surface. In shock tube flows 
it may be necessary to include these effects which necessitate the 
simultaneous solution of the energy equation in the free stream. 
Chien and Cornpton [15] obtained solutions to the energy equa
tion in the free stream but neglected boundary layer flow ef
fects. Although their comparisons with test data obtained by 
Borucki, et al. [18] are favorable, some improvement might be 
obtained by including induced flow considered in the present 
study. 

k, 
4cr T2. 
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Radiative Flame Cooing for Reduction 
of Nitric Oxide Emissions 
The effect of soot upon heat transfer in combusting gases is investigated. The medium 
considered is a turbulent gas-soot mixture contained in a plane parallel enclosure. The 
nongray radiative nature of the soot and the effects of the geometrical configuration are 
taken into account using an "internal" or "modified" slab emissiviiy especially devel
oped for the purpose. 'The simultaneous turbulent transport and radiation are treated 
with full nonlinearity. It is shown that small amounts of soot greatly aid the radiative 
cooling of combustion gases, which undergo microrecirculation by turbulent mixing. 
Larger amounts of soot increase combustion temperature and hence unwanted nitric 
oxide emissions. 

Introduct ion 

It is well known that large stationary fossil fuel combustion 
units produce more than proportionately larger amounts of nitric 
oxide. For example, a single 300,000-kw unit produces approxi
mately 3 0 1 8 = 1.22 times more NO than three 100,000-kw units 
[I].1 Reasons for this greater production may be a longer resi
dence time in the high temperature zone and a smaller area of 
water wall per unit of fired heat release in the larger unit. Rut in 
addition to these factors, and very likely of much more effect, is 
the reduction of radiative cooling per unit volume of combustion 
gas brought about by the increased optical depth of soot in the 
larger unit. Even a small increase in flame temperature can cause 
a significant increase in NO emissions [2]. 

Nitric oxide, which participates in photochemical reactions in 
the atmosphere, is a serious atmospheric pollutant in some urban 
areas. Breen. et al. [2] describe some successful quick-fixes to re
duce NO emissions from existing units. In mixing-controlled com
bustion or two-stage combustion, radiative cooling of the combus
tion gases, which are subsequently entrained into the air and fuel, 
occurs. In an atomized-oil or powdered-coal-fired unit, the bulk 
of the combustion chamber then exhibits no recognizable burner 
plumes but appears to be filled with a ball of fire. Large amounts 
of soot are formed and consumed. 

There has been undertaken at UCLA a systematic study of 
radiative transfer accompanied by simultaneous turbulent con
vection. This study has been pursued, because it is the belief of 
the authors that radiation heat transfer in utility boilers and fur
naces can be significantly improved and that, at the same time, 
lower combustion temperatures in such units can be achieved 
with consequently less production of nitric oxide. 

1 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division of THE AMERICAN SOCI

ETY OF MECHANICAL ENGINEERS and presented at the ASME-AIChE 
Heat Transfer Conference, Atlanta, Ga., August 5 8, 1973. Manuscript re
ceived at ASME Headquarters April 2:1. 197:!: revised manuscript received 
September 14. 1973. Paper No. 73-HT-32. 

This paper is the first work of the present authors to consider 
the influence of soot upon the radiative process, previous work 
having been concerned with the action of molecular gases. It will 
be shown that the radiator soot, when present in a small amount, 
is highly beneficial because it promotes high radiative cooling of 
the combustion and hence greatly reduces the rate of formation of 
NO. But, in sharp contrast to the behavior shown by molecular 
gases, more than a small amount of soot is highly deleterious to 
the radiative transfer process. 

Analys i s 
Simultaneous Radiation and Turbulent Transport. The 

model used previously in examining the effects of molecular gas 
radiation is retained [3, 4). Two plane, parallel, black, isothermal 
cooled walls contain a turbulent gas as shown in Fig. 1. In this 
case the gas contains soot, which absorbs and radiates heat. Tur
bulence in the gas is manifested through an eddy diffusivity speci
fied by the Van Driest law of the wall [5) modified by a channel 
factor [6]. Both molecular and turbulent Prandtl numbers are 
taken to be approximately 0.7 with the result that the eddy diffu-
sivitv for heat is 

P''y -. fc«' - 1 ) , 

1 a- 4 / \ V ; ' (1 - exp (~v'/A'))2V' (1) 

where the von Karman constant K is 0.4, A* is 26. and /? = 3.4. 
The quantity y* is the distance from the wall normalized by the 
channel half width o, and 

v* r- (p,!V/(VJi)R fY* (2) 

R, R e r (3) 

In heterogeneous combustion, volatiles may burn in a thin reac
tion zone between fuel-rich gases and oxygen-bearing gases, while 
fuel particles or eddies of air burn throughout the combustion 
chamber volume. The thin reaction zone is modeled here as a 
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plane heat source of negligible thickness at which a heat flux qlf 

Btu/hr ft2 is released. The combustion taking place around the 
droplets or particles distributed throughout the volume is mod
eled by a volume heat release Qv Btu/hr ft3. But in addition to 
this volume combustion, often written "Ltrihi0, where r, is the rate 
of formation of species i per unit volume and hi0 is the specific 
enthalpy of formation of species i. there is a volume cooling effect 
due to convection, usually written pcpu-vT. The quantity Qc is 
used here to represent difference Zi'rthj0 — pcpv-VT. It thus 
models both the volume combustion heat release and the convee-
tive sweeping of the combustion gases through the chamber. 

With this model the energy equation takes the form 

d 
0 = rfV '*• -11R . QV 

(IT , ^ <7__ 
dv ' + dv 

Symmetry exists within the channel; consequently the boundary-
conditions are 

V = 0 : T ::- T. 
(IT 
dv 

(IT 
'Iff 

o: 111 = 0 

V =- 5 , A'. 
dv 

' K „,€. a , 

"// ' 

dT 
dv 

(4) 

(5) 

(6) 

(7) 

// 
Because of the symmetry in the temperature profile, the radiant 
flux (in is zero at the center of the channel. 

Integration of equation (4) with respect to y and imposition of 
boundary conditions (6) and (7) yields two energy equations 

0 '•'• v 6 / y : Qv (S - v ) + 'lff = ' ' ^ / / ^ T ~ <1R dv 
(8a) 

Qv ( 6 - y ) = h, 
(IT 
dv <1R (8b) 

These relations must be solved subject to equation (5) and con
tinuity in temperature at the flame front. 

The Radiant Flux in a Sooty Gas. Unlike molecular gases, 
soot radiates as a continuum over a broad portion of the spec
trum. Soot is formed by the condensation and agglomeration of 
carbon with some hydrogen from cracked hydrocarbon mole
cules [7, 8]. The properties depend somewhat on the size and 
composition of the particles. 

There is general agreement that the isothermal spectral emissiv-
ity of small soot particles is given approximately by 

-ftxci (9) •x = 1 -

A>A ~ K,,X- (10) 

and n is close to unity. Howarth, Foster, and Thring [9] report 
that K0 is insensitive to temperature. Kuniotmo and Sato flOJ 
surveyed the literature and collected optical constants for inser
tion into the Mie equations and made measurements of particle 

size distributions. Their infrared calculations agree with equation 
(10) with n near unity, but their experimental measurements in
dicated a value of n of approximately 0.70. Beer and Siddall [8] 
recommend 1.086, and Hottel recommends n = 1.39 in the visible 
and 0.95 in the infrared. 

There is also general agreement that scattering by soot is negli
gible, e.g. [8, 9]. The sizes and optical properties of the particles 
give an albedo for a single scattering of less than 0.01 at a photon 
wavelength of 1 micron and considerably smaller values at longer 
wavelengths. (See Fig. 12 of reference 110].) 

In order to use a convenient formulation of the radiant flux qRt 

as shown by Wang [11], it is necessary to have an expression for 
the modified or "internal" total emissivity. The internal total 
emissivity is given by [12] 

€ ; ( 7 ' , cL) = f [l-e-k^L}d/i{XT) (11) 

Using a standard three-point Gaussian quadrature, e.g. [13], one 
obtains 

<Li(T,cL) = E f t | 1- -K„cl(T/abl"\ (12) 

where au <z2, 03 are given by [12, 13] 

/ ;(«,) = 0 .11270 rtt = 1882 u deg K .ft = 5/18 
/",.(«,) =. 0 .5000 a., = 3218 p. deg K ft = 4 /9 
/,-(«;)) = 0 .88729 a, = G445 u deg K ft = 5/18 

Equation (12) is quite similar to the three-gray-band approxi
mation procedure recommended by Hottel [7]. The fact that Hot
tel found three bands to be sufficient for many technical calcula
tions suggested to the authors that three-point Gaussian quadra
ture should be adequate here. In contrast to the older procedure, 
which requires laborious and arbitrary curve fitting, equation (12) 
is logical and unambiguous. For K0cL = 0.01 to 100 and T = 2300 
to 3500 deg F, equation (12) agrees with exact equation (11) with
in 3.1 percent. 

The internal total emissivity for the slab geometry then is 
t 

€ S i i ( r , v*) = J ei(T,cv*/ti)2i±dii 

= £o-b\l-2E.i(T,v*(T/akr)} (13) 

whe re 
K„c6 

E„(x) = / e-:,/uii"-2dji 

(14) 

(15) 

In the same way that equations (8), (18), and (19) of reference 
[3] were derived for molecular gas radiation, expressions for soot 

^Nomenc la ture . 

at = Gaussian quadrature abscissa 
A = surface area 

At-j - matrix element, equation (23) 
c = soot concentration 

(,p = specific heat 
Dn = hydraulic diameter, 45 

e = extent of incompleteness 
En = exponential integral, order n 

/ = friction factor 
f, = internal Planckian fraction 

Fi-j = radiant flux element 
gt = Gaussian coefficient 

km = molecular conductivity 
k = absorption coefficient 

KT ~ radiant flux kernel, equation (17) 
/ = node number at flame front 

L = mean beam length 
m = number of subdivisions 
m = mass flow rate 

n = soot absorption exponent 

P = temperature gradient 

<j = heat flux 
Qv = volume heat release 

Q = combustion heat release 

Ram = radiation-conduction ratio 

R< = turbulent Reynolds number 

Re = Reynolds number 
T = temperature 
x = mole fraction 
y = distance from wall 
5 = half thickness of channel 

(H — eddy diffusivity of heat 
( = emissivity 
p. = viscosity 
v = wave number 
p = density of mixture 
a = Stefan-Boltzmann constant 

TO = optical depth at v = 104 cm 1 

Subscripts 

c = center line 
/ / = flame front 
i = ith location, also internal total 

radiative property 
j = jth location 

R = radiation 
s = slab 
T = total 
v = volume 
w = wall 
A = spectral 

Superscripts 

* = dimensionless quantity 
+ = turbulent quantity 

38 / FEBRUARY 1974 Transactions of the ASME 

Downloaded 25 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



radiation may be found. When account is taken of the symmetry 
in temperature about the center of the channel there results 

v, dT 
<1R K, * ) 4 C T T 3 — , rfv' 

ax ' 
(16) 

where the symmetric kernel is 

K T ( v * , v ' * ) = £ s ; ( T , 2 - v * - v ' * ) - € s j ( T , ! v * - v ' * | ) 
(17) 

Equations (16) and (17) take into account the nongray radia
tive behavior of soot described in the foregoing and the spatial 
variation of temperature. In this analysis it is assumed, for sim
plicity, that the soot concentration is uniform throughout the 
channel width, even though in actual situations it is position de
pendent. 

Solution of the Energy Equation. Let any of m discrete 
values of the y coordinate be singled out with subscript i. The 
wall is located at y,^\ = 0 and the center of the channel at >',•„„, 
= <5. Then equation (16) can be approximated with a numerical 
quadrature. A simple scheme is 

" I f > K r . ( v ( V v ' * ) d y ' ) l [ f l J . 1 ' P , . 1 + B/Pj\ 
y. ,_l ' * 

- 1 
where 

7\ (T , 

r . = 7\. P, * -7Vi ) , ( v y - v J - - i ) 7 ' i = r « 

B' = 4a 7\ 

P 
dT 

The numerical quadrature may be recast into the form 

-< / R (v ( ) = S A^JB/PJ 

where 

(22) 

1 
4, , j = 9 [ P , , , + P i ( i J , Attl 2 i J i ' 2 ' 

1 i,m o x t , m 

(23) 

7Y/ = ./ Kru) (v,-*,v'*)rfv' (24) 

When a flame front exists at location y;, two values of dT/dy 
exist, one at i,, ' and the other at &,, + . Hence the y; scale and 
the F j values are renumbered with 

yi=.Vi ( 0 id> i = l,1 )'i = ^'i-t.oid > / = / + 1 , m+l 
The Fj,; matrix is expanded by inserting a column of zeros to 
form a new / + 1 column, and a row of values equal to those at row 
/ are inserted to form a new l + l row. Equation (23) is used to 
generate the new .4, j matrix. 

For numerical solution by iteration, the energy equation (8 
ah) is written 

r-Qr(& -y , - ) + <iff = M t f . j ' P r 

/ + X,m + 1 : Qv{6 - y , . ) = M » i ' P j -
m-tt 

B'P: 

(25o) 

(2 5 ft). 
With a starting set of F,, the property and ««.,- vectors and F,j 
and A,,; matrices are generated, and equations (25o6) solved for P,. 
With the new set of P,, equations (18) and (19) are used to gener
ate a temperature vector Tu and the procedure is repeated until 
convergence is obtained. 

The Total Heat Balance. In order to assess the extent to 
which blockage of radiation heat transfer by soot might increase 
nitric oxide emissions, it is necessary to make comparisons for 
equal rates of firing. Account is taken of incompleteness of com
bustion by the following procedure: 

1 Except for the fraction of NO, which is reaction-rate con-
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Fig. 2 Extent of incomplete combustion at equilibrium and theoretical 
flame temperature 

trolled, the composition of the combustion products is assumed to 
that corresponding to equilibrium at the volume average tempera
ture. This composition is fixed by an incompleteness of combus
tion parameter e. 

2 The combustion heat release per unit area is taken to be 
(mCpl2A)TmRX(e) where TmBX(e) is the theoretical flame tempera
ture. 

3 The combustion heat release equals the radiant and convec-
tive heat transfer to the water wall plus the heat flow to the con-
vective section, taken to be (mcp/2A)Tv. The total heat balance 
is thus written 

(Iff + Qyo = (mcp/2A )[ Tmax (e) - Tv] (26) 

Under this assumption, when there is no radiative cooling, Tv 

rises to T„mx(e), which is then the theoretical adiabatic flame 
temperature. 

For utmost simplicity a combustion reaction with a single in
completeness parameter was taken. 

C + O, + 3 . 76 N, - (1 - e)CO, + -CO + T J -0 , + 3 .76 N2 

The soot is assumed to be formed by a portion of the C fuel, con
tinuously supplied as in "mixing controlled combustion" [2]. 
Equilibria data from reference [14] then lead to a curve of e versus 
Tv shown in Fig. 2. Theoretical flame temperature versus e is also 
found [15] as shown in Fig. 2. If relative values of qtf and Qy5 are 
fixed, the analysis of simultaneous radiation and turbulent trans-
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port and a chosen value of center line or flame front temperature 
fixes both qlf + QVS and T,. The value of 7', fixes an equilibrium 
value of e from Fig. 2, and this value in turn fixes T m a x in the fig
ure. With these values, the value of mc„/2A in equation (26) is 
fixed for a value of Tr or T,,. A nominal value of mc„/A then 
shows how 7', or T,/ and 71 varies with T0. 

Nitric Oxide Emissions. In order to evaluate how an increase 
in flame temperature affects nitric oxide emission levels, the au
thors have made use of the Zeldovich-based reaction kinetics of 
reference [2], It was assumed that the NO concentration actually 
achieved was brought about in two steps. The frozen concentra
tion that would result from a time of 0.05 sec at the tlame front or 
center-line temperature was found, as was the concentration that 
would be caused by a time of 1 sec at the volume average tempera
ture. An upper limit to the NO emission concentration was 
found by adding the two values. 

Results 
Radiation calculations were made for two relative values of qn 

and Qy/>- In. one case (/., was taken to be zero, and all the heating 
from combustion and cooling (in effect) from convective sweeping 
was assumed to manifest itself in a net positive volume heating. 
In the other case Qv was taken to be zero, and all of the heat de
livered ID the void trail was assumed to be produced at the tlame 
front. This latter case was not the upper limit of complete flame 
front heat release, for only a fraction of the total combustion heat 
release is absorbed by the wall, and the remainder is swept away 
to the convective section of the boiler or furnace. The turbulence 
level was considered fixed by R, = 1000. The flame front case cal
culations show that, in order to maintain low flame front tempera
ture, only relatively low firing rates can be used so that the frac
tion of heat transferred to the wall by radiation and turbulent 
diffusion is as high as one-third. Therefore, the case of flame front 
heat release investigated may be viewed on an overall basis as 
approximately Vs heat release at the flame front and % distribut-

Table 1 S i m u l t a n e o u s R a d i a t i o n a n d T u r b u 
lent Diffusion 

R, =- 1000, 5 = 1 f t . T,„ = 980 deg F 

Case 
Volume 
heating 

10 
5 

F lame 
front 
heating 

0.5 

10 
5 

T. 
deg F 
3500 
2960 
3140 
3320 
3500 
2960 
3140 
3320 
3500 
2960 
3140 
3320 
3500 
2960 
3140 
3320 
3500 

3500 
2960 
3110 
3320 
3500 
2960 
3140 
3320 
3500 
2960 
3140 
3320 
3500 
2960 
3140 
3320 
3500 

v.. 
deg F 
3203 
2774 
2940 
3105 
3273 
2839 
3010 
3180 
3351 
2871 
3040 
3219 
3396 
2881 
3060 
3236 
3414 

2968 
2449 
2600 
2754 
2910 
2358 
2496 
2637 
2784 
2307 
2434 
2564 
2694 
2289 
2408 
2529 
2651 

qn. 
B t u ' h r ft2 

131,300 
118,800 
142,400 
169,000 
198,400 
145,500 
178. 
215. 
257. 
133. 

100 
400 
600 
300 

165,900 
203,800 
247,400 
101,100 

qr 
B t u / h r ft2 

147,500 
129,800 
145,000 
184,200 
215.800 
157,700 
190,900 
230,200 
274,700 
143,200 
177,800 
217,700 
263,200 
110,500 

127,800 138,700 

55 
65 

159,200 
195,900 

65,500 
600 
400 

76,000 
87,600 
60,400 
71,700 
84,500 
98,500 
54,000 
64,700 
76,600 
90,100 
42,900 
51,900 
62,000 
73,400 

171,800 
210,500 

74,600 
61,700 
72,300 
84,000 
96,700 
65,800 
78,000 
91,600 
106,600 
58,900 
70,132 
83,100 
97,200 
47,253 
56,800 
67,600 
79,700 

rr 
l_ 
<t 
cr 
LU 

a. 
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to 
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LU 
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Fig. 3 Temperature profi le for an opt ical depth of 10 

ed over the volume counterbalanced by that % being swept away 
by convection. 

Table 1 shows the radiation-turbulent-diffusion results. The 
only two parameters varied parametrically were optical depth T0 

and center temperature 7',. In all cases wall temperature was 
fixed at 980 deg F, R, at 1000, and channel width 25 at 2 ft, A 
value of n = 1 was used for the soot absorption coefficient expo
nent. While the calculations were all made in dimensionless form, 
parameterized by TO, RJ, Ram ~ iaT^in^bjk,-, u = hvi'0/kTv, r = 
Tw/Tc, and assumed property variations, (p/n) = (po/'Mo) (T/ 
7'0) '•", and A'm = k0(Ti'T0)

n-7, the results are presented in dimen
sional form. 

The table shows that at equal peak temperature much more 
heat transfer can be obtained in the volume heating case than in 
the flame front case, but, for both, the highest rates occur at an 
optimum optical depth of soot in the neighborhood of 2. Peak 
temperatures tend to be considerably above volume average tem
peratures for the flame front case and less so for the volume heat 
release case. Fig. 3 shows a temperature profile. 

Table 2 shows the nitric oxide emissions which result, from a 
volume heat release rate of firing equal to 1.13 million Btu/hr per 
sq ft of one channel wall. An optical depth of 10 gives rise to 440 
ppm of NO, while the optimum value of 2 results in a value of 
only 24 ppm, some 18 times smaller. For the flame front heat re
lease case the rate of firing is some two and one-half times small
er. The quantity Q/A is obtained from me,,72.4 from equation 
(26) using nominal values of 14,093 Rtu per lb of fuel, 12.53 lb of 
combustion products per lb of fuel, and <•,, = 0.31 Btu/lb deg F 
for the combustion products. 

Fig. 4 compares the two results. The flame front heat release 

has a minimum ppm of NO almost twice as high as the volume 

heat release case even though the total heat release rate per unit 

area of one wall is 2.5 times smaller, because flame front heat re-

Table 2 Effect of Soot o n Ni tr ic Oxide E m i s s i o n s 

Case 
Volume 
heat ing 
Q/A = 
1.13 X 106 

B t u / h r ft2 

F l a m e 
front 
heat ing 
Q/A = 
0 .446 X 10' 
B t u / h r ft2 

T[) 

10 
5 
2 
1 
0 .5 

10 
5 
2 
1 
0 .5 

T, ^ 
deg F 
3500 
3270 
3100 
3140 
3230 

3500 
3360 
3355 
3465 
3600 

deg F 
3200 
3060 
2975 
3040 
3150 

2968 
2788 
2665 
2667 
2720 

qr 
B t u / h r ft2 

147,500 
167,500 
183,000 
177,800 
154,000 

74,600 
86,900 
92 ,100 
94 ,500 
87 ,000 

xuo 
ppm 
440 

76 
24 
66 

172 

210 
47 
46 

120 
420 
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(at 1 i. 
1 .65 
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2.14 
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ON CHANNEL HALF WIDTH 

Fig. 4 Comparison of nitric oxide emissions for f lame front and volume 
heat release versus opt ical depth of soot 

Table 3 Effect of Spectral Variation Exponent 
n Upon Volume Average Tempera tu re and Wall 
Heat Flux 

R, = 1000, 5 - 1 ft, 7', = 3500 deg F, 
T,„ = 980 deg F, t(T.-,c8) = 0.64 

T„ 71. qu gr 
deg F Btu/hr ft'- Btu/hr ft2 

3355 266,160 283,225 
3351 258,897 276,000 
3351 257,600 274,700 
3349 254,493 271,604 
3343 243,230 260,344 

lease results in a peak temperature considerably greater than the 
volume average temperature. The sharp minimum in the case of 
volume heat release occurs near r0 = 2, while the flame front case 
is less sensitive and can toierate a somewhat larger amount of 
soot. Both curves climb steeply as the soot optical depth drops 
below a value of unity. A moderate amount of soot is seen to be 
highly beneficial in promoting high heat transfer rates in the ra
diant section and in suppressing the formation of NO in the com
bustion zone. 

D i s c u s s i o n 
While eddies of flame have been thought to be too small and to 

exist for too short a time for radiation to play a role in controlling 
nitric oxide production in utility boilers, the present authors find 
a large effect. The reason is not hard to discern. It is well known 
that recirculating exhaust products (which have been cooled 
below adiabatic flame temperature) will reduce the combustion 
temperature of a flame. In a turbulent gas there is a microrecir-
culation brought about by turbulent eddies of exhaust products 
mixing with combustion air. On a statistical basis some of these 
eddies will contain gases which have cooled off by the strong radi
ative cooling mechanism which operates, unless the visibility of 
tire cold wall î  masked by too much soot. 

The results obtained here corroborate a number of empirical 
findings. For example, it is known that mixing-controlled or two-
stage combustion, either of which tends away from flame front 
heat release toward volume heating, reduces nitric oxide emis
sions. It is also known that a natural gas burner adjusted to pro
duce little soot and tending toward (lame front heat release can 
produce large amounts of NO. Overly sooty fuels produce more 
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Fig. 5 Comparison of gas and soot radiat ive cool ing versus optical 

depth. Turbulence Reynolds number R; = 1000 

NO than does natural gas during controlled combustion, and 
larger units produce more than proportionately larger amounts of 
NO. The reason for the latter appears to be twofold, larger units 
having too great an optical depth of soot as well as too little radi
ant wall area. There is also the possibility that soot-producing 
fuels (end to contain more nitrogen impurities which may add to 
the formation of NO. 

Existing units could benefit from control of soot formation dur
ing mixing-controlled or two-stage combustion. As shown in Fig. 
4, an optical depth based on channel half width should be ap
proximately 2: then the value based upon geometric mean beam 
length is 8. Exhaust gas recirculation or steam injection can be 
used to control soot formation. 

New units would benefit from partitioning the combustion vol
ume such that the half channel optical depth would be approxi
mately 2. With clever design, the larger amount of radiant wall 
surface introduced could be put to good use, since the radiant 
heat fluxes are high. The wall heating rate calculated here for a 
980 deg F wall and T0 = 2 (see Table 2) is 183,000 Btu/hr ft2. This 
value is in good agreement with empirical observation of fluxes of 
175,000 Btu/hr ft2 on clean water wall 116). 

It is perhaps interesting to note that Viskanta [17] showed that 
radiant transfer to the wall from a gray gas flowing laminarly in a 
parallel plate channel becomes maximum at an optical depth of 
2, based upon the total channel spacing 2b. Here we have found 
that minimum nitric oxide produetion at a flame front within a 
nongray. turbulent sooty gas occurs for an optical depth of 4 
based upon total channel width 2<>, a photon wavelength of 1.0^, 
and a gas temperature on the order of 3000 deg F. 

Since larger-sized particles of soot have lower values of spectral 
exponent n in equation (10), the sensitivity of the temperature 
profiles and heat fluxes obtained here to variations in n was in
vestigated. Values of n equal to 0.7 [ 10], 0.95 [71, 1.0, 1.086 |8 | , 
and 1.39 (7] were used. Turbulence parameter K,, thickness h, 
center temperature T,, wall temperature 7',,., and external total 
emissivity i.(T,,ci)\ were held constant. Results are shown in 
Table 3. The magnitudes of the variations in volume average 
temperature 7", and heat fluxes r//( and </•/• are thought to be suffi
ciently small in view of the broad optimum shown in Fig. ( that 
departures of k>. from equation (10) with n = 1 due to differences 
in particle size or composition jlO] do not affect the validity of the 
conclusions reached here regarding an optimum optical depth of 
soot for combustion chandlers. 

The behavior of soot in rendering the radiant wall invisible to 
the flame, when the amounts of soot are too large, is in marked 
contrast to the behavior of the C()2 and H2O molecular gas com
bustion products found previously (3. 4). Fig. 5 shows this differ-
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ence. As opt ica l d e p t h is increased, t h e gas b a n d rad ia t ion merely 

shifts in t h e wings of t h e b a n d s so t h a t a p l a t e a u in r ad ia t ive 

cooling is reached . B u t in t h e case of soot, the a d d e d optical 

dep th masks t h e high t e m p e r a t u r e regions from being able to ra

dia te to cold wall, and at higher values of opt ica l d e p t h t h e t r ans 

fer a t the wall itself is reduced as the b o u n d a r y layer becomes 

more absorb ing . Whi le the p resen t analysis considered soot radia

tion only, it appea r s t h a t in t h e case of combined soot and gas ra

dia t ion too m u c h soot will block the gas rad ia t ion as well. T h e 

problem of combined soot a n d gas r ad ia t ion is a nont r iv ia l exten

sion of t h e presen t work, and t h e au tho r s will a t t e m p t to t r e a t the 

problem in t h e fu ture . 

Acknowledgment 
C o m p u t a t i o n s were carr ied out a t the UCLA C a m p u s C o m p u t 

ing Network . A. Ba l ak r i shnan gratefully acknowledges suppor t 

received from S t a t e of California, School of Engineer ing , Air Pol

lution G r a n t No . 4-402474. 

References 
1 Woolrich, P. F., "Methods of Estimating Oxides of Nitrogen Emis

sions From Combustion Processes," Industrial Hygiene Journal, Vol. 22, 
1961, pp.481-484. 

2 Breen, B. P., Bell, A. W„ Bayard deVolo, N„ Bagwell, F. A., and 
Rosenthal, K., "Combustion Control for Elimination of Nitric Oxide Emis
sions From Fossil-Fuel Power Plants," Thirteenth Symposium (Interna
tional) on Combustion, The Combustion Institute, 1971, pp. 391-401. 

3 Edwards, D. K., and Balakrishnan, A., "Self-Absorption of Radia
tion in Turbulent Molecular Gases," Combustion and Flame, Vol. 20, 1973, 

pp. 401-417. 
4 Edwards, D. K., and Balakrishnan, A.. "Radiative Cooling of a Tur

bulent Flame Front," to be published, JOURNAL OF HEAT TRANSFER. 
5 Van Driest, E. R., "On Turbulent Flow Near a Wall," J. Aero. Sci 

Vol.23. 1956. pp. 1007 1011. 
6 Mei, J., and Squire, M.. "A Simple Eddy Viscosity Model for Tur

bulent Pipe and Channel Flow," AIAA Journal, Vol. 10, 1972, pp. 350-352. 
7 Hottel, H. C , "Radiant Heat Transmission." Heat Transmission 

Ch. 4, by McAdams, W. H„ McGraw-Hill, N. Y„ 1954. 
8 Beer, J. M.. and Siddall, R. G., "Radiative Heat Transfer in Fur

naces and Combustors," ASME Paper No. 72-WA/HT-29. 
9 Howarth, C. R., Foster, P. J., and Thring, M. W„ "The Effect of 

Temperature on the Extinction of Radiation by Soot Particles," />oc 
Third International Heat Transfer Conference, 1966. pp. 122-128. 

10 Kunitomo, T., and Sato. T., "Experimental and Theoretical Study 
on the Infrared Emission of Soot Particles in Luminous Flame," Heat 
Transfer 1970. Vol, III, Elsevier Publishing Co.. Amsterdam, paper R1.6 
1970. 

11 Wang, L. S., "The Role of Emissivities in Radiative Transport Cal
culations," J. Quant. Spectrosc. Radio. Transfer, Vol. 8, 1968, pp. 1233-
1240. 

12 Edwards, D. K., "Radiative Transfer Characteristics of Materials," 
JOURNAL OF HEAT TRANSFER, TRANS. ASME, Series C, Vol. 91, 
1969, pp. 1-15. , 

13 Love, T. J., Radiative Heat Transfer. Merrill Publishing Co., Co
lumbus, Ohio, 1968, p. 262. 

14 Lewis, B., and Von Elbe, C , "Heat Capacities and Dissociation 
Equilibria of Gases," J. Am. Chem. Sac. Vol. 57, 1935, p. 612. 

15 Lee, J. F., and Sears, F. W., 'Thermodynamics, Addison-Wesley, 
Cambridge, Mass., 1955, pp. 462-463. 

16 Steam. Babcock and Wilcox, New York, 37th ed., Ch. 7. 1963. 
17 Viskanta, R., "Interaction of Heat Transfer bv Conduction, Convec

tion, and Radiation in a Radiating Fluid," JOURNAL OF HEAT TRANS
FER, TRANS. ASME, Series C, Vol. 85, 1963, pp. 318-328. 

42 / FEBRUARY 1974 Transactions of the ASME 

Downloaded 25 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



K.R.CHUN 
Member Senior Technical Staff, 

Northrop Research and Technology Center, 
Hawthorne, Cali f . Mem. ASME 

Surface Heating of Metallic Mirrors in 
High Power Laser Cavities 
The effect of the absorptance increase with the rising mirror surface temperature on the 

final surface temperature is examined. For noble metals such as silver, copper, and 
gold, the Drude theory predicts an approximately linear dependence of the normal spec
tral absorptivity on the temperature in an absolute scale for the wavelengths 1 fi ~ 15 jj. 
and the temperatures 100 deg K ~ 1200 deg K approximately. For such a regime, it is 
shown that gross underestimates of the final surface temperature rise result from the as
sumption of the constant absorptivity at the initial temperature when the estimated, value 
becomes comparable to the initial temperature, in. an absolute scale. 

Introduction 

I HE FIELD of laser interaction with materials has 
been an area of extensive investigations in recent years as can 
be evidenced in the literature [1, 2].1 With the escalating power 
levels of CO2 and CO lasers in pulsed or continuous wave mode, 
the problem of distortion and melting of optical mirrors in the 
laser system can become the limiting factor on the permissible 
level of output power. 

The problem of transient heating of a semi-infinite medium 
without phase change has been considered for the time-varying 
beam intensities and the gaussian beam distributions [1, 3]. 
However, the dependence of the surface absorptance on the sur
face temperature has not been taken into consideration so far. 

For typical mirror materials such as silver, copper, and gold, 
the normal spectral absorptivity increases with temperature 
even though it is typically only a few percent at room tempera
ture. Thus for a constant beam intensity the absorbed power 
increases with the surface temperature rise and the increased 
absorption rate further raises the surface temperature establish
ing a positive feed-back loop. The main thrust of this paper is to 
estimate the effect of the surface absorptivity increase with the 
temperature on the heating of mirror surfaces in high power laser 
systems. In pursuit of this objective, some important simpli
fications had to be made as described in the following. 

1 No phase change occurs on the mirror surface. Thus the 
analysis presented here cannot be applied beyond the melting 
point. 

1 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division for publication (with

out presentation) in THE JOURNAL OF HEAT THANSFKK. Manuscript 
received bv the Heat Transfer Division June 14, 1973. Paper No. 
74-HT-A. 

2 Cooling from the irradiated side by convection and radia
tion to the surroundings is negligible compared with the absorbed 
power. At 1200 deg K surface temperature and 300 deg K am
bient temperature, for example, the heal loss by front face cool
ing amounts to a few tens of w cm2 and can be neglected when the 
instantaneous absorbed power is in the order of kw cm2. 

•i Laterial conduction parallel to the surface is negligible 
compared with that normal to it, i.e., one-dimensional. This 
can lead io a serious error when the thermal penetration depth 
Vfit becomes comparable to the beam size. 

4 The beam intensity is constant in time. This is again a 
doubtful assumption for beams such as (^-switched lasers. 

5 Heat is absorbed at the surface and the beam penetration 
depth is infinitesimal. 

6 The normal spectral absorptivity varies as the Drude theory 
predicts. 

For noble metals, the classical theory by Drude based on the 
free electron model is believed to predict satisfactorily the 
normal spectral reflectivity above moderately low temperatures 
(> 100 deg K) and at long wavelengths (> lju) [4, ,">]. At wave
lengths shorter than Ifi, and at very low temperatures, the quan
tum mechanical effects and the anomalous skin effect come into 
play and extensive discussions of such effects are given in the 
literature [0-8]. 

Drude Theory for Optical Constants ol Metals 
On the basis of electromagnetic theory, the spectral normal 

reflectivity is given by 

|(/y _ j p („. _ 1)2 + A'2 

Pn.x(X, 7') = 
\N + 1) 

<x„.\ 1 - P->,x 
(« 

(n__ 

(n + I)2 + k2 

J/p ^_ 
f Y ) 2 +~k2 

( 1 ) 

( 2 ) 

Journal of Heat Transfer FEBRUARY 1974 / 43 Copyright © 1974 by ASME

Downloaded 25 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



where „V = (n — ik) is she complex refract ive index. For non-

absorb ing (ideal dielectr ic i media, A" -- 0. D r n d e ' s t heo ry for 

opt ica l const a n t s of me ta l s result in t h e express ions [-}], 

u2 - A:2 = 1 
X \ 2 1 

(•->) 

2 nk ii XV2 

x. 

whe 

X, 
A'( 

X» = 2ircT 

m = e lec t ronic mass 

A" = m i m b e r dens i ty of free e lect rons , a s sumed to be one 

c = speed of l ight 

III <7n 

A'< 
re laxat ion t ime of t lie free e lec t rons 

do = direct cur ren t electr ical c o n d u c t i v i t y 

10' 10 
TEMPERATURE, "[< 

Fig. 1 Temperature dependence of normal spectral absorptivity of 

P o k i n g mi n md / ti >ID . <]U < ion- H md 1 mil s t ibs t i tu l ing silver and copper based on Drude theory 

rlit -< into t nu it n HI 12' tin n o t m i l -pi i 11 il ib -o i r j t iv i ty of a 
I1K t ll ( ill lit I \ p l ( -s( (1 ) 

i KT" r"r y.°M 
'r>*> ~ a„ ~ Md' 

[Mc t \ ,i i / i l ' 

' [Jui \ ,i /- i]1 + 1 J a 
7) 

A" = a mate r i a l cons tan t 

.1/ = a t o m i c weight 

where the c o n s t a n t s a and b a re as defined in e q u a t i o n s (o) and (4). where 

T h u s the n o r m a l spec t ra l a b s o r p t i v i t y is dependen t on or, in 

add i t ion to the incident beam wave leng th , X. 

In the limit (X X2) » 1, namelv at loiur wave leng th and short . . 
, , - , • , , , ,' . . " ,_ i 0 = D e b v e charac te r i s t i c t empera ! lire ol the mater ia l 

re laxat ion tune Kir low <l-o c o n d u c t i v i t y I, equal ion (•>) reduces • ' 
to t h e wel l -known H a g e n - l b i b c n s relat ion . 

(I'or silver, a = 221! deg K and copper , 6 — :W1) deg K . ) 

Ir , Us ing the c o n d u c t i v i t y va lues of e q u a t i o n (7) in e q u a t i o n (5), 
c " , x == ' ' M % ' , ' va lues for the normal spec t ra l a b s o r p t i v i t y of silver versus tem

p e r a t u r e and w a v e l e n g t h were ca lcu la ted and are p l o t t e d in Figs, 

where ris in o h m - c m and X is in em. 1 and 2, respect ively . In the r ange of t e m p e r a t u r e s of in teres t , 

T h e dependence of the res is t ivi ty of a meta l on t e m p e r a t u r e 100 d e g K — 1200 deg K (mel t ing point of s i lver) , and wavelength , 

m a y be expressed by the Blooh- t i rune i sen re la t ion range of ly. ~ 15/J , a good l inear a p p r o x i m a t i o n can be m a d e as 

•Nomenclature-

c = speed of light fern sect or specific 

h e a l of mi r ro r s u b s t r a t e 

joule 

>T deg C 

A = - - / j - ' ( s e c - <=) 
1 i v kpc 

c — e lect ronic charge (cou lomb) 

h = heat t ransfer coefficient be tween 

t h e mi r ro r back face and t h e 

coolant fluid (w cm 2 deg ( ' ) 

]i, = inc ident beam in ten- i iy Iw/ ra i ' - j 

,/ = energy absorbed by t h e surface in 

t ime ( (joule) 

K = t t iermal COIKTUCIIV 

s u b s t r a t e 
w 

em deg ('• 

t i i iciion coefficient 

w = e lect ronic m a s s fgr) 

X, ii = in teger or refract ive index 

i) = heat flux per unit a rea f'w n i r 

/{ = overal l t h e r m a l res i s tance 

cm'2 deg (..' 

r = d-c res is t iv i ty (ohms) 

T = abso lu te t e m p e r a t u r e (deg K ) 

I = l ime (sec) 

(',. = surface t e m p e r a t u r e rise based 

on the cons tan t a b s o r p t i v i t y 

a, tdeg K ) 

v = T - T, ( d e g K ) 

x = coord ina te normal to mi r ro r sur 

face fern) 

}' _, EC-'- = 
2 T 

a = a b s o r p t i v i t y 

5 -• mi r ro r th ickness (cm) 

cm 2 

K = the rma l diffusivitv 
see 

p = dens i ty of mi r ro r s u b s t r a t e (gr 

cm 3 ) or re l lec t iv i ty 

cr„ = d-c conduc t i v i t v ( m h o ) 

X = wave leng th (cm), or a c o n s t a n t in 

equa t ion (1.7J 

X, =• -- - - ( c m ; 
Ae 2 

X;, = 2TTCT (cm ) 

r — re laxat ion t ime of e lect ron (sec) or 

t ime va r i ab le in e q u a t i o n (11) 

v -- f requency ( s e c - 1 ) 

co ~ 2iri> (see"'1,) 

Subscripts 

c = based on a cons tan t a 

i = at t u n e / = 0 

/ = value at the coolant fluid t e m p e r a 

tu r e 

0 = condit ion at the surface, x = 0 

;• - at reference s t a t e , 300 deg K 

n = n o r m a l to t h e sur face 

X •= tit wave l eng th X 

44 / FEBRUARY 1974 Transactions of the ASME 

Downloaded 25 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



oc„\ = ( c o n s t a n t ) ? 1 

a„ ,x at T T 

«„ ,x at 7', ~ Tr 

(8) 

(9) 

where T, is t h e reference t e m p e r a t u r e in deg K at wh ich resis
t iv i ty is measured , say 300 deg K. 

In case of silver, H a g e n - l i u b e n s relat ion is seen t o be va l id 
only at ve ry long w a v e l e n g t h s a n d high t e m p e r a t u r e s . F o r 
example , at 1200 deg K, it is val id at X > 20 n and at 300 deg 
K, X > 100/u. I n these ex t r emes , 

a,, 

a 

».x_at T = jr 

-,,x at r, \rr 
(10) 

Single Pulse Into a Semi-Infinite Solid 
I he 0 inp( i t tu i i d i - l i ih i i t ion ol i -eini-mfiml< -olid i m t i i l h 

at i un i lo i in 1( inp i i itiilt J tnd wi th I Mint dt ))< »uU nl 1» it t lux 

f i ' ) 11 n - - n i t K ( / — 0 i in hi wilt ten i- [')] 

f > - l ' i t ) I a - r> 

WAVE LENGTH, X (MICRON) 

Fig. 2 Wavelength dependence of normal spectral absorptivity of silver 
based on Drude theory 

and the so lu t ion b y successive s u b s t i t u t i o n can be shown as an 

infinite series [10] 

T h e surface t empera tu re , at x = 0 can be wr i t t en as 

1 
i'o(0 = 

\ I P< f 
\ "• J o 

rlr 
fit - T) • ,~ 

(ID 

(12) 

voit) g(t') + X I Kit, T)CI(T)<IT 

If a b e a m of cons t an t inten-itA /,> and a cons tan t a b s o r p t i v i t y of 

a, e v a l u a t e d at T,, a re a—timed, namely , 

fit) = htXi = cons t an t , 

then (12) gives the wel l -known resu l t 

Vc ha: 

+ X' 

/ ' 
Jo 

+ X2 J Kit, r) I 
J 0 J 0 

J Kit, r) I Kir, T-,)... f 
J o J o J o 

Kir, Ti)g{n)dri + 

Kir,,--2, T„-,)gir„-i) 

T, Ti^/kpc v ' V 
t 

Vr. 
Ft' (13) 

X rtTn-i. . .drrft + ( IS ) 

Solving (16) in the m a n n e r of (18) one o b t a i n s 

vait) 

where 

1 , 1 

T: rTTT1/*)} + ro>) 
1 1 

F3 + V4 

r(2 + VJ) r(3) 

_ _ha>i 
J '~ T:\/kpc 

Let us consider t h e case of a b s o r p t i v i t y va ry ing l inear ly w i th 
t e m p e r a t u r e as in (9) 

1 

,(?,f(l + n/2) 

r a 

ys. 

n / 2 ) 
Y« + 

(19) 

T 

T h e flux abso rbed b v t h e surface becomes 

/ ( ' ) = ha — ha 

S u b s t i t u t i n g (15) i n to (12) 

ttl(t) = 

1 + 
v„{t) 

(14) 

(15) 

w h e r e 

, . ha,-

r(»o 

Ti^/kpc 

in - 1)! 

(/! - 0 . 5 ) . 

V_TT V, 

~Y T,-

( 2 . 5 ) ( 1 . 5 ) ( 0 . 5 ) v / 7 r 

(h ha: rl r ±VJA_^J)~\ ''• 

Vkpc'Vir J o L ' 2'i J r V " 

C h a n g i n g the va r iab le r to it — f ) and then se t t ing (~ = r 

, 27' , , . / i f r„(T) 
Vnil) = A — !•- + — . 1 -; -' -,-dT (10 

V T T V T J n V - T)' : 

Thi s is a l inear in tegra l e q u a t i o n of the Yol ter ra t ype , 

r,,(t) = git) + X I Kit, T)V,,(T)<!T 
Jo 

(17) 

T h e first t e rm on t h e r igh t side of t h e first e q u a l i t y of (10) is 

n o t h i n g b u t t h e c o n s t a n t a b s o r p t i v i t y solut ion (13). I t becomes 

o b v i o u s tha t as Y ge t s larger , t h e m a g n i t u d e of add i t iona l t e r m s 

can d o m i n a t e the first. T h e proof of convergence and t h e es t i 

m a t e of t r u n c a t i o n e r ror are g iven in t h e Appendix . 

N u m e r i c a l va lues of (19) for n = 10 are p l o t t e d in Fig. 3 . 

F o r } ' = 1 a n d 1.3, t h e t r u n c a t i o n er rors are 0.6 percent a n d 13.5 

pe rcen t , respec t ive ly . T h e s a m e figure also shows t h e ra t io 

;>o/Trc, n a m e l y the ra t io of ac tua l surface t e m p e r a t u r e to t h e 

" c o n s t a n t a b s o r p t i v i t y " so lu t ion (13) . F o r example , for Y = 1, 

i'o = 3.5 Vc 

B y k n o w i n g Ho/l\, one can find t h e t e m p e r a t u r e d i s t r i b u t i o n 

wi th in t h e solid via (15) and ( I I ) . 
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}(t) = ha, 

E 

"=' r i + 

r 
r 1 

(20) 

Substituting (20) into ( I I ) , and utilizing the equation (10 
[p. 77, reference !)], 

This concludes the solution for a semi-infinite medium with 
an absorptivity varying linearly with the absolute temperature 
of its surface for an incident beam of constant intensity; the 
temperature distribution by (21), the surface temperature by (19) 
and the total energy absorbed by (22). 

Steady Heating of a Finite Thickness Mirror by CW Beam 
For a steady uniform beam of intensity h incident on a 

solid at x = 0 whose back face at x = 5 is cooled by fluid at T, 
the steady heat flux is 

v(x, 0 = £ 
(n+i) 

E"+,(4t) ~~2 ' i"+lerfc 2V«. 
(21) 

</ = 
Equal ion (21) can be shown t o reduce to (10) for x = 0. Energy 
absorbed J during a pulse duration of I is 

en - T, (T0 - T, 
(24) 

f! f ' " h:ia,l<> o 
fW = E / •„>:'-

/o J o „ = o r / 1 + M 

dl 
where /) is the heat transfer coefficient between the back face 
and the coolant. 

Again assuming the loss from the front face to be negligible 
and a = af = constant, 

ha,E" 1 , + ' 
/ 

n ' -rh + - m , 2 

A En 2 
= had + hen 2_, ~~ N l 

" - » I 

To — T f = ha tli. 

If 

+ 1 

a ^ To 

af Tf 

r(, + •) 
(22) 

= ha = ha. 
To 

Defining Jc = had, i.e., the energy absorbed if constant ab
sorptivity is assumed, 

y - = 1 + E ' (23) 

By equating (24) with (2,1) 

To = 

Tf 

I 
hafR 

(25) 

(20) 

as plotted in Fig. 3. 

T. VkPC 

Fig. 3 Theoretical surface temperature for the cases of constant ab
sorptivity and absorptivity varying linearly with absolute temperature 

Since a cannot exceed one, equation (20) is valid only when 

To , I 2oa.fi? 
_ - < __ o r < 1 _ 0Lj 

T/ a.f 'if 

ha fix . 
If -77— > 1 — a,-, a. is already unity and it, = J 1 + hR, unless 

Tf 

the other limiting assumptions already invalidate equation (26). 

Conclusions 
For noble metal reflectors, in the wavelength regions 1 ~ 15/u. 

and temperatures 100 —- 1200 deg K, tlie normal spectral ab

sorptivity is approximately proportional lo the absolute tem

perature. For such a regime, an analytical solution is obtained 

for semi-infinite mirror temperature distribution and energy ab

sorbed. For high intensity pulsed beams, if - - — tl - reaches an 
\/kpc 

order of the initial temperature, Tt, the actual surface tempera
ture rise can be at least three times that based on constant ab
sorptivity at Ti. 
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A P P E N D I X 

Proof of Convergence 
The infinite series of (19) can be written as the sum of two power 

series; 

vo(t) ^ 1 

^ S r ( 1 + i) 
y„ 

= E 
A ' = l 

1 1 
— y2,v-i _| YiN 

•(-0 r(jv + i) (Al) 

The ratio r0dd of the odd powered series is 

_ rdv + 70 K'^-4-')-' 

r„dd - r ( A r + j + l / i ) - Y t l , - l 

The ratio revei, of the even powered series is 

r(Ar + i) r«A'+i> 

Yi 

N + 0.5 

''even 
T(N + 2) F»A N + 1 

(A2) 

(A3) 

Since both ratios approach zero as N —• oo, the series is shown to 

converge for a finite Y, The truncation error e for taking only N 

terms in (Al) [11] is 

0 < < ( r°** \ F " " ' / r«™» \ 

~ € - \1 - r„dd/ T(N + 70 \ l - nxeJ 
yw 

T(N + 1) 

where 

Af-i V ' / A'=l \ i V 

(A4) 

(A5) 

For a specified e, more terms (N) are required as Y grows. For a 

valid use of (A4), it is necessary to take enough terms so that 

N > Y* Vi 
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On the Solution of Linear Diffusion 
Problems With Variable Boundary 
Condition Parameters 
A method of solution is presented for the treatment of a class of boundary' value prob
lems of linear diffusion theory for finite homogeneous media which have applications in 
transient heat conduction (or mass diffusion) in a finite medium subjected to convective 
type boundary condition with time and space dependent coefficient, in the processes of 
neutron slowing in a finite medium with absorbing boundaries that exhibit energy-de
pendent cross sections, and in many related areas. 

Introduct ion 

A large class of boundary value problems of neutron slowing 
down, transient and steady heat conduction or mass diffusion can 
be solved by the application of the classical methods of solution 
described in various references such as Morse and Feshbach [l],1 

Carslaw and Jaeger [2], Davison [3], and Weinberg and Wigner 
[4], or they can be solved more systematically by the application 
of integral transform technique described by Sneddon [5], Tranter 
[6], Olcer |7], and Ozisik [8]. However, a gap remains in the litera
ture on the solution of a class of boundary value problems involv
ing boundary condition parameters that vary with time (or equiv
alent variables in analogous problem). Examples of these more 
general problems appear in several partical physical situations: 
(a) transient heat conduction in finite homogeneous media 
subjected to convective type boundary condition with time- and 
space-dependent heat transfer coefficient, (b) neutron slowing 
and thermalization in finite media with an energy-dependent 
boundary condition associated with typical neutron absorbers. 

Standard analytical approaches as cited in the foregoing refer
ences cannot be applied to the solution of such problems because 
the eigenfunctions and eigenvalues of the appropriate eigenvalue 
problem depend on time (or corresponding independent variable). 
In an attempt to circumvent this difficulty, Thompson and Holy 
[9] and Holy [10] separated the heat transfer coefficient into a 
constant and time dependent part, and used the method of eigen-
function expansion to transform the problem to the Volterra-type 
integral equation for the boundary surface temperature; but the 
solution of the resulting integral equation was extremely difficult. 
Another approach tried by Ivanov and Salomatov [11J involved a 
change of the dependent variable which simplified the boundary 

1 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division for publication in the JOUR

NAL OF HEAT TRANSFER. Manuscript received bv the Heat Transfer 
Division, July 5. 1973. Paper No. 74-HT-I. 

condition but introduced a nonlinear term into the differential 
equation. 

Therefore, it appears that there is still no satisfactory analyti
cal method of solution of the problem of transient heat conduc
tion subject to convective type of boundary condition with time 
and space dependent heat transfer coefficient, or neutron diffu
sion problems in a finite medium with energy dependent bounda
ry conditions. 

A n a l y s i s 
Consider the following boundary value problem in a homoge

neous, finite region R 

V-\k(r)Vi<(yj)\ + c(r)n(rj) + M{r,l) = ii:(r) 
<)/ 

in region R, for / • 0 

subject to the boundary conditions 

a»(r. s , / ) 

(lfl) 

Hrs) / / ( r s , l)nU\,l) 

f(i\,l) on boundary ,s, for / > 0 (lb) 

and the initial condition 

a(r.l) — F(r) in region H, for / 0. ( l r ) 

The analytical solution of this boundary value problem with the 
straightforward application of the standard mathematical tech
nique will pose a difficulty because the coefficient h(j\:,t) appearing 
in the boundary condition depends both on the space variable r 
and the time variable t. If the finite integral transform technique, 
for example, is applied to solve this problem, the transformation 
of the partial differential equation (la) into an ordinary differen
tial equation in the variable t is not readily possible because the 
integral transform kernel depends on t; hence the right-hand side 
of equation (la) can not be transformed into a derivative with re-

48 / FEBRUARY 1974 Transactions of the ASME Copyright © 1974 by ASME

Downloaded 25 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



spect to t of the integral transform of the function. 
To solve the foregoing boundary value problem the appropriate 

eigenvalue problem is 1,aken as 

V-\/;(r)Vil(rj)\ -i. c(r)ii(rj) -f 

A2(/)/c()-)fi;(r,/) = 0 in region ft, (2a) 

subject to the boundary condition 

k(rs) ^ ^ d l 4 l,(rs,OJrs,l) = 0 on boundary s . (26) 
aw 

Here the eigenfunctions and eigenvalues depend on t because 
fife, t) depends on t. It can readily be shown that these eigenfunc
tions are orthogonal with respect to the weight function w(z) as 

[ iv(r)J, JrJ)ii„(r,l)dr - 0 for in * n (3) 

where the integration is over the region R. 
The function u(z, t) can be expanded in terms of the eigenfunc-

tion •i/mit, t) over the region R in the form 

ii(rj) = T^tijl)tl,jr,l) (4«) 

and the expansion coefficients am(t) are determined by utilizing 
the foregoing orthogonality conditions as 

«J0== T r W »'(l)*Jrj)u(rj)dv (46) 
1 * m V' ) R 

w h e r e 

Xjl) ^ j w(r)ij(rj)dv (4c) 
R 

For convenience in the subsequent analysis the expansion given 
by equations (4) is now rewritten as the finite integral transform 
and the inversion of the function u(r, t) developed in the forms 

T r a n s f o r m : «„,(/) = j iv(r')Kjr,j)n(r'J)dv' (5a) 
R 

Invers ion : n(rj) =- ljKjr,l)77jl) (56) 
m 

where the kernel Km(x_, t) is the normalized eigenfunction 

nir.I) Kjr.l) = r$jT) 
(5c) 

and Nm(t) has been defined previously. 
The integral transform and the inversion as defined by equa

tion (5) will now be utilized to solve the boundary value problem 
given by equation (1). Equation (la) is multiplied by Km(r, t) 
and integrated over the region R to yield 

/ Kjr,l)V-\k(r)V„(r,0\dr + J c(r)Kjr,/)ii(r,/)dr 
R R 

+ f KjrJ)Jr,l)dr = f w(r)KjrJ)--^ (6) 

The first integral on the left-hand side of equation (6) can be 
written in the alternative form as 

J Kjr,/)V-\h(r)V/t(r,/)\f/r 

= f it(r,l)V-\k(r)\>KjrJ)}dr 

R 

+ f ^ ^ K j y ^ ^ ^ . ^ ^ ^ ^ l l ] ^ ( 7 ) 
' s — - rill — ' d)l 

This result is obtained by integrating the identity Km^-(k Vu) = 
u V-ffe VKm) + V-[k(Km Vu - u YK,n)} over the region R and by 
changing the volume integral to a surface integral. By utilizing 
the eigenvalue problem given by equation (2a), the integrand of 
the first integral on the right-hand side of equation (7) becomes 
»( r , / )V-[ / , ( ; - )V -Kjr j ) | = -c(r)Km(r,l)u(rJ) 

By making use of the boundary conditions equations (16) and 
(26), the integrand of the second integral on the right-hand side 
of equation (7) can be determined. 

on - dn 

=-- Kjrsj)f(rs,0 (9) 

Substitution of equations (8) and (9) on the right-hand side of 
equation (7) and utilizing the definition of the transform as given 
by equation (5a) yields 

[ KJrJ)V-\h(r)V„(rJ)\dr 
R 

=-- "j (ir)Kjr,l)n(r,l)flr -\J(l)nJD 

Kjrs,/)f(rxJ)ds (10) 

and the substitution of equation (10) into equation (6) gives 

Zjl) -i A„2(/)/7m(/) = /!„(/) (11«) 

where we have defined 
•A,,I,- I\ 

(lift) Zjl)^j,v(jKjr,,)^ldr 

A JO = / Kjrx,/)/'('-,,/)ds + f Kjr,/),<;()-,/)dr (lie) 
s " R 

The integral transform of the initial condition equations (Ir) be
comes 

77 JO = j ir(r)Kjr,/)F(r)dr = FjO) for / = 0 (12) 
R 

If the eigenfunctions and the eigenvalues were independent of 
time, i.e., h(r, t) were independent of time, the equation (11a) 
would be an ordinary differential equation for um(t) and could be 
readily solved with the initial condition equation (12). Knowing 
limit), the function u(x, t) could be determined by the inversion 
formula equation (56). In the present analysis, however, this is 
not possible because Zm(t) given by equation (116) cannot be 
written as dum(t)/dt. In order to express Zm(t) in terms of um(t), 
we consider the eventual solution given by the inversion formula 

i<(rj) = TjK„(rj)7t„(l) 

and substitute this relation in equation (116) 

(13) 

ZJI) = / w(r)Kjrj) ~- \EK„(r,l)r,n(l) \dr (Ua) 
R " ' " 

We perform the differentiation with respect to t on the right-
hand side of equation (14) and obtain 

zjD =S '-^- / ivKJi„dr + E r ,„ ( / ) / wKm ^ d r (146) 

ZJI) 
<I«JI) d<„ 

+ T*T<n(l)j wKm ^fd (Uc[ 

since Jvw KmKn dv = <5mn by equation (3), where !>„,„. is the kro-
necker delta. Equation (156) can be written in the alternative 
form as 

ZJI) 
dujl 

dl 
] -Enn(i)J wKj^f- dv 

since it can be shown that 

j lrK m
hldfdr = - / ,vK J--f-dr 

R ••>! R a ' 

(14rf) 

(15) 

xJ{Oiiir)KjrJ)u(r,l) (8) from the r e l a t i o n s 
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HI 

and 

\KjrJ)Kn(rJ) | = Kjr,l) ^f^- + A'„(r,/) ^ # ^ 

(16a) 

(16/)) 

When equation (I4d) is introduced into equation (11a), the fol
lowing set of coupled ordinary differential equations are obtained 
for the transform um(t): 

~jf^- + KHDTtJl) - El7n(l)B„Jt) = Ajl) (17«) 

subject to the conditions 

iljl) = FJO) for / = 0 , (17/)) 

where m = 1, 2, 3, . . . , and various quantities are defined as 

AJ/) = I A\„(r s , / ) / ( r s , / )a \s + I Kjrj)Jrj)dr (18a) 
s - - R 

FJO) -= f iv{r)Kjr,0)F(r)dr (18&) 

R 

B„J/)^ [ / r ( r ) ^ ( r , / ) - ^ % ^ « Y (18c) 

We note the following properties of functions Bnm(t): 

B„Jl)=-Bm„(t) (19a) 

B r a ( / ) = Ofor i, = »i . (19/)) 

The formal solution of the problem can now be considered as 
complete. Once the functions u(t) are determined from the solu
tion of simultaneous equations (17), the desired function u(r, t) is 
immediately obtained by the inversion formula, equation (5a). 
However, in practice, it is not possible to solve an infinite number 
of simultaneous ordinary differential equations; but analytical 
approximations can be obtained by taking only a finite number of 
terms in the summation in equation (17). Therefore, an s-order 
approximation is obtained by taking s number of terms in the 
summation in equation (17); that is 

dnjl) 
dl 

\J(l)uJt) - EH„(t)Bm(l) = Ajl) , (20) 

m = 1,2,3,. . . , » 

which should be solved subject to the conditions give by equation 
(176) fort = 0. 

The zeroth order solution is obtainable by neglecting the sum
mation entirely (i.e., s = 0) in equation (20), the first order solu
tion is obtainable by taking the first term in the series (i.e., s = 
1), etc. We note that simple analytical solutions are obtainable 
for um for the cases s = 0 and 1. For values of s larger than one, 
the first s equations (i.e., m = 1, 2, . . . , s) in equation (20) are cou
pled and to be solved simultaneously, the remaining equations m 
= s + 1, s + 2, . . . a> are uncoupled. Once these equations are 
solved and the integral transforms um(t), m = 1, 2, . . . , s, . . . ,<= are 
determined, the function u(r, t) is obtained by the inversion for
mula given by equation (5a). 

It is convenient to separate the coupled and uncoupled groups 
on equation (17) and write them in the matrix form as: 
For m = 1, 2 , s 

du(l) 
dl Au(l) = A(/) 

u(0) = F(0) 

vhere various matrices and vectors are defined as 

A = 

A/ 

(21c 

u ( / ) = 

ITs(/)_ 

F o r m = .s + 1, 

A(/) = 

Aid) 

AJl) 

As(l) 

F ( 0 ) 

FiiO) 

F,(0) 

Fs(0) 

(22) 

where 

da*&) + xj(i)njt) = cji) 
dl 

UjO) = FJO) 

cjl) =AJI) + T,lTn(t)Bm„(i) 

(23a) 

(236) 

(23c) 

In the foregoing system of equations, the coupled equations (21) 
are first solved simultaneously and the transform un(t), n = 1, 
2, . . . , s is determined. Then the functions cm(t) on the right-hand 
side of equations (23) are considered known, and the solution of 
equations (23) is written as 

„(/) = Fj0)c + .f cjf')e ' dl' 

for in = s + 1, s + 2, . . ., °o : (24) 

Knowing the transforms um(t), m - 1, 2, . . . ,<*>, the function u(r, 
t) is obtained by the inversion formula given by equation (5b). 

For example, the zeroth order solution u'°'(r, t) is given by 

' 2 

«""(»• , / )= TJKJI-J) \Fj0)e " m 

+ j AJDe <• 
i) 

and the first order solution u'^'d, t) is given by 

(r,/) = „ ' ( r . / ) 

w h e r e 

E(l') 

+ T,KjrJ)j E(l')BiJ/')e 

_ -I x , {t'ltif t -I 

Ft(0)c ° + [A^lV ' 
0 

df I (25) 

dl' (26a) 

df 

Bi Bu 

(26/)) 
Thus simple analytical results are obtainable for the zeroth and 
first order solutions, but explicit results cannot be given for the 
higher order solutions because the equations are coupled. 
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Radiative Transfer in Packed 
Spheres 
Radiative transfer through a packed bed of microspheres is analyzed on the basis of a 
new conceptual model, which combines the continuous and discontinuous models in pre
dicting the scattering and absorption properties of packed microspheres. The basic ele
ments of the formulation consist of the determination of the scattering diagram of a unit 
cell, the optical properties of a series of thin microsphere layers, and the solution of the 
two-flux equations. Results show a strong dependence of these radiative properties on the 
particle diameter and emissivity. Qualitative agreement is shown in the comparison of 
the predictions with existing experimental data. 

Introduction 

Radiative transfer through packed spheres has long been a 
subject of great importance in the performance evaluation of 
packed-sphere insulation and pigment coatings. Accurate predic
tion methods are particularly needed in high-performance cryo
genic insulations [1, 2].1 In the new microsphere insulation [2, 3] 
that consists of packed hollow dielectric microspheres (20 to 200,u 
in. dia) with a highly reflective metallic coating of about 400 A 
thick, the major heat transfer mechanisms are radiative transfer 
through voids and conduction through the contact spheres. The 
present paper is concerned with the prediction of the radiation 
contribution, while an earlier paper [4] analyzes the conduction 
problem. 

General Considerat ion 
The radiant intensity through a slab of packed spheres or pow

der is attenuated by particle absorption and scattering, and is 
augmented by particle emission. Two different analytical models 
have been commonly employed to describe the radiation trans
port: in such a dispersed medium. The medium can be regarded 
either as continuous, having homogeneous and isotropic proper
ties, or as discontinuous, being composed of a series of discrete 
layers whose thicknesses are determined by the size of the parti
cles [5]. 

In the continuum model, three parameters, namely, the scatter
ing and absorption coefficients and the phase function, are re
quired to describe the radiative transfer in an absorbing and an
isotropic scattering medium. Attempts have been made to solve 
the transfer problem by introducing the Mie solution for single 
particle scattering into the radiative transport equation [6]. How-

1 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division for publication in the JOUR

NAL OF HEAT TRANSFER. Manuscript received bv the Heat Transfer 
Division, May 3. 1973. Paper No. 74-HT-O. 

ever, when the particles are tightly packed, as in the case of mi
crosphere insulation, the transport equation with the Mie solution 
is no longer valid because of dependent scattering [7]. 

For a sufficiently thick slab of packed particles, an isotropic 
distribution of scattered intensity always exists inside the medi
um [5J. This observation implies that scattering and absorption 
in radiant transport can be characterized by only two parameters 
instead of three. Assuming the existence of two discrete fluxes in
side the medium (i.e., two-flux model), one forward and the other 
backward, and after making an energy balance on an infinitesi
mal layer of thickness dx$, the fluxes are given by the following 
pair of equations [8]: 

f- = - (K + S) «•/• + S,f 
dx, 

dx. 
(K + S) ef + Si/ 

U) 

(2) 

where x% is the coordinate perpendicular to the boundary plane of 
the slab, q+ and q~ are the radiant fluxes in the positive and 
negative X3 directions and K and S are the apparent absorption 
and scattering parameters. The parameters K and S are empiri
cal in nature and should not be interpreted in terms of the scat
tering and absorption coefficients in the transport equation, al
though a similar form of equations (1) and (2) can be derived 
from the transport equation by assuming semi-isotropic intensity 
in the positive and negative directions [9], 

As shown by Kubelka f 10], the transmittance T and the reflec
tance p of a slab of packed particles having a finite thickness L 
can be found by solving the two-flux equations with the boundary 
conditions: 

(3) 'I = '/ .i (A 0) 

<1 0 Cv3 = L) (4) 

The results are: 
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2,1, 
; v ) s i n ho„l. ~ 2 J „ c o s IKJ„L 

^ - i\r)sin liu„L 

(1 -•- , i ' - ) s in lto„L •'•• 2,>ucos li(inL 

where 

K + 2.S 

<y„ :--\K(]< + 2S)] 

(5) 

(6) 

(7) 

(8) 

The parameters K and .S of a given sample can be determined by 
measuring either the transmittances or the reflectances of two 
different sample thicknesses. But both of these methods encoun
ter certain technical difficulties. For instance, in order to obtain 
measurable transmission data, a thin-layer sample has to be used 
in the measurements (11]. If the layer is only a few particles 
thick, a portion of radiant energy can be transmitted directly 
without interacting with the particles. This direct radiative 
transfer would not fulfill the diffuse assumption of the two-flux 
model. On the other hand, reflectance measurements on finite 
sample thicknesses do not yield the substantial differences in re
flectances which are necessary to determine accurately the pa
rameters [n]. 

Due to the homogeneity assumption of the continuous model, 
there is no direct relation between the flux parameters and the 
properties of the medium such as void fraction, particle size, and 
surface reflectance of the particles. The relationship, however, 
can be established by considering the discontinuous model, in 
which the slab of particles is regarded as a series of plane parallel 
layers. The thickness of these layers depends on the particle size 
and their packing arrangement. From thin film optics it is well 
known that the transmittance and reflectance of a whole series of 
layers can be expressed in terms of the transmittance and reflec
tance of the individual layers. 

One of the key elements of the present study is the new concept 
of relating the continuous and discontinuous models so that the 
bulk properties, such as the apparent absorption and scattering 
parameters of the medium, can be determined from the physical 

and optical properties of the constituent particles and other sys
tem paramters. In order that a packed medium can be described 
by both models, two conditions must be fulfilled. First, the parti
cle diameter must be small in comparison to the layer thickness, 
so that the medium can be considered homogeneous. Second, the 
particle diameter has to be large compared to the characteristic 
wavelength of the radiation so that the slab can be divided into 
optical layers. For opaque microspheres of normal insulation 
thickness, these two conditions are fulfilled even though the cold 
boundary temperature is extremely low (say 4 deg K). 

In the present analysis the radiative properties are assumed to 
be gray and temperature independent, and other secondary ra
diation phenomena, such as polarization and diffraction, are ne
glected. The fundamental formulations and concepts, however, 
are not restricted to these conditions. 

Analysis 
Physical Model. The physical model consists of an infinite 

slab of identical metal-coated microspheres packed in a simple 
cubic arrangement. The slab is rc-particle thick and is divided 
into parallel planar layers (Fig. 1). Each layer is defined by the 
center-to-center distance between two planes of contacting 
spheres. The slab is bounded hy two half layers, one at the top 
and the other at the bottom. The layers are subdivided into iden
tical unit cells as shown in Fig. 1. The void volume in each cell is 
enclosed by sections of solid spherical surfaces and of imaginary 
planar openings. Therefore, for layers within the slab, the void 
space is bounded by fourteen surfaces and for the half layers it is 
bounded by ten surfaces. 

Scattering and Absorption of a Unit Cell. Under the present 
consideration, a diffuse radiation flux enters the void of the unit 
cell through one of the planar openings as shown in Fig. 2. Since 
inside the enclosure the refractive index of the solid surface dif
fers from that of the void space and the physical dimension of the 
cell is large in comparison to the incident wavelength, it is possi
ble to distinguish rays striking various parts of the surface. The 
incident ray is reflected with some of its energy absorbed by the 
surfaces. For specularly reflecting surfaces, the path of an inci
dent ray within the unit cell can be traced by means of geometri
cal optics until the ray escapes through one of the openings. An 
opening can be regarded as a black surface that absorbs all the 
energy passing through it. By tracing a large number of incident 

• N o m e n c l a t u r e -

Qi, «2, a3 = coordinates of the origin of 
the ray vector 

6, by. 62, 63 = backward component in 
flux diagrams 

d = distance between two 
points 

I) = sphere diameter 
e, = unit vector in the x- direc

tion 
= incident flux 
= orthogonal flux compo

nents inside a layer 
= energy carried by a ray 

ftf1.f2.f3 = forward component in flux 
diagrams 

hi = mathematical function of 
surface i 

i = ray vector 
K = apparent absorption pa

rameters 
'1. '2. '3 = directional cosines of an 

incident vector 
h', W. h' ~ directional cosines of a re

flected vector 

E0 

Ei. E2, A'.,, 
£4, E5, fi6 

Er 

L 
n 
h 

N = 

. <r = 

T o 

s, si , s2 , 
S 3 5 , 

X l . X2 

X\ , X2', 

S 3 , 

S36 

S. 

t-'s 

, X3 

X3 

insulation thickness 
number of layers 
unit normal vector 
the component of the nor

mal vector in the .r, di
rection 

number of particles per 
unit volume 

radiant heat fluxes in the 
positive and negative x3 

direction, respectively 
: q+ at the boundary x3 = 0 

coordinates of the sphere 
center 

sidewise component in flux 
diagrams 

: apparent scattering pa
rameter 

; sphere volume 
: Cartesian coordinates 
: coordinates of the intersect

ing point 
; (1 + P

2-T2) 

'• absorptance 

Bo = [K/(K + 2S))1 2 

5s - solid fraction 
r:p = emissivity of particle sur

face 
f) = polar angle 
II = defined in equation (45) 
P - reflectance 

pp = reflectivity of particle sur
face 

do = [K(K + 2S')(1 2 

T = transmittance 
<t> = azimuthal angle 

u.'o. «oi. = fraction of the incident 
W02. uo3 energy scattered for dif

ferent flux diagrams 
in1 = differential solid angle 

Subscript 

Superscript 

( = layer, / = 1 for layer 1, / = 2 
for layer 2. / = 12 for 
combined layers 1 and 2, 
etc. 

= reversed direction 
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Fig. 1 Analytical model: (a) packed spheres, (b) regular and half layers, 
(c) unit cell 

s - « — 

, ' 

J V ' 

' 

/ 

fr DIFFUSE 
INCIDENT 

Fig. 2 Flux diagram of a unit cell in a regular layer 

rays, the scattering and absorption of the unit cell can be de
scribed by the distribution of the incident energy on each of the 
enclosure surfaces. A convenient representation of the distribu
tion would be a flux diagram with six components (Fig. 2). For 
layers within the slab this diagram will be the same for energy in
cident on each of the six openings of the cube. The forward com
ponent /, the backward component b, and four equal sidewise 
components s represent the fractions of the incident energy reach
ing the planar openings at the top, the bottom, and at the four 
sides, respectively. If (1 - OJ0) is the fraction of the incident energy 
which is absorbed, then from conservation of energy, /, b, s, and 
wo are related as: 

b (9) 

For the unit cell of the half layer, the energy distribution on the 
enclosing surfaces depends on the opening through which the inci
dent energy passed. As a result, three flux diagrams, rather than 
one, are required (see Fig. 3). 

The determination of the flux diagrams is a problem of radiant 
interchange inside an enclosure. Except for certain simple geome
tries [12], the general problem of the radiant interchange among 
curved reflecting surfaces in an enclosure is very complicated. So
lutions have been obtained by using a probabilistic model of the 
radiative process and Monte Carlo sampling techniques [13]. The 
main disadvantage of the Monte Carlo method is the excessive 
computer time required. Recent approaches include an extension 
of the image method originally developed for planar specular sur
faces to general nonplanar surfaces [14], and an analytical at
tempt involving the transformation and mapping of the reflecting 
surface [15]. However, these analytical methods are restricted to a 
single reflector and receiver system. 

In the present study, a deterministic model of the radiative 

process is developed. A ray can be viewed as a bound vector 
carrying a certain amount of energy Er in the three-dimensional 
space. The vector is specified by an initial point (<ii, a2, a^) and 
the directional cosines (h, h, h) of a line segment. The quantities 
('1, '2, I3) ate the cosines of the angles between the line segment 
and the fixed Cartesian axes xi, x2, x3. Each of the enclosure sur
faces is analytically represented by a mathematical function: 

h, 0 / = 1, 2, . . . p (10) 

where p is the total number of surfaces inside the enclosure. For a 
smooth surface, hi(x\, x2, X3J is a continuous function specified in 
some closed region. The boundary of the region depends on the 
intersection of neighboring surfaces. The intersecting point (x\ , 
x2 , X3') between the unit ray vector i and the surface / can be de
termined by the following relations: 

,rf 

n, = l , d 

l,d 

M V , -v2', -v3') =0 

(11) 

(12) 

(13) 

(14) 

where d is the distance between the initial and the intersecting 
point: 

"3 11/2 

E (V-f l , ) 2 (15) d = 

S W = 1 (16) 

The ray would strike the surface j if there exist a set of real 
values xi, x2', X3', and d that satisfy equations (11) to (15) and 
the two additional conditions: (a) d be strictly positive and (b) 
the point (x\, x2', X3') lie in the defined region of the surface. 
However, there may exist more than one set of feasible solutions 
that satisfy all the requirements for certain rays and certain en
closure geometries. The reason for this nonuniqueness is simply 
that the ray can mathematically intersect one physical surface at 
more than one point or it can intersect with more than one sur
face inside the enclosure. For opaque surface, the set of feasible 
solutions with the minimum distance d is the physical intersect
ing point. 

Rays incident on a specular surface are reflected according to 
the following fundamental laws of geometrical optics: (a) the 
angle of reflection is equal to the angle of incidence; and (b) the 
incident ray, the surface normal at the intersecting point, and the 
reflected ray all lie on the same plane. These two laws are suffi
cient to determine the directional cosines h', l2 , l3' of the reflect
ed ray, giving 

h' = / , - -2H,Z; v * / = 1, 2, 3 (17) 

where ns is the component of the unit vector h at the point of in-

OIFFUSE 
\J? INCIDENT 

f, b2 . 

T-r-
-•-• • •' v\ z 

! 
$,S 

DIFFUSE 
NCIDENT 

/ \ DIFFUSE Z 

u INCIDENT 

Fig. 3 Flux diagrams of a unit cell in a half layer 
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tersection and h is given by 

g r ad liAx,', 
I g r ad li, (A ,M 

(18) 

oEr amount of energy where pp is the 
reflectivity of the surface. The remaining energy £,(1 - pp) is ab
sorbed by the surface. The initial point of the reflected vector is 
(xi, x2', x3'). The process is repeated until either the ray has lost 
most of its energy by multiple reflections or it hits one of the open 
surfaces of the unit cell. 

Optical Properties of a Single Layer. On passing through a 
layer of unit cells, the diffuse incident flux will be absorbed and 
multiply reflected. The optical properties of the layer are the 
transmittance n, the reflectance pi, and the absorptance at. By 
definition, their sum is equal to unity, i.e., 

r, + p , + rv, = 1 (19) 

Because of the geometrical symmetry, the transmittance and re
flectance of a regular layer for both forward and backward direct
ed incident radiation are the same. The layer is thus said to be 
homogeneous. On the other hand, the optical behavior of the half 
layer at the boundary of the slab depends on whether forward or 
backward directed radiation is considered. This layer is thus said 
to be nonhomogeneous. The reflection and absorption characteris
tics of such a layer must be defined by two sets of optical proper
ties; one for the forward, and the other for the backward directed 
incident radiation. 

The flux within a layer (regular or half) is represented by six 
orthogonal components E\, E2, E3, £4, E5l and En, which are the 
components opposite and parallel to the fixed Cartesian axes xlt 

x2, and X3, respectively (Fig. 4). By symmetry, £x , £2 , £3, and £4 
are equal to each other and constant throughout the layer. Mak
ing an energy balance in the six directions of a unit, cell inside the 
homogeneous layer yields the following equations when only one 
face of the layer is irradiated: 

(E, Efi EJ E, + E s + £ , ) s (20) 

£= = £,,/> (E, £•> ESV (21) 

/ \ TRANSMITTED 
ENERGY 

1} REFLECTED 
ENERGY 

DIFFUSE 
INCIDENT 

Fig. 4 Six-component representation of radiant flux inside a layer 

£ , =r £,/" + EJ) + £,N 4- E,N + £ , 

(22) 

(23) 

(24) 

£ , = EJ + E:,b + E , s + E , s 4 E„s (25) 

where £ 0 is the incident flux and /, 6, and ,s are the components 
of the flux diagram (Fig. 2). The solution of equations (20) 
through (25) can be written as 

E, 
,s-£„ 

1 - / " - h - 2 > 

E\ = (h 
4 s2 

* = V+—f 

1 - / ' - f i - 2.-

4s2 

' - fi - 2> -)/;„ 

(26) 

(27) 

(28) 

The transmittance 77, reflectance pt, and absorptance m of the 
layer are defined by 

Pi 

E0 
- / 

= ft 

1 - / ' - b - 2 s 

4s2 

1 - /' -IT^IH 

(l I I ) ( £ . I '• £ 1 E, + E, £,) 

(1 - w„) 
1 - /' - b 

(29) 

(30) 

(31) 

Through a similar process, the two sets of optical properties of the 
half layer can be expressed in terms of the components of the flux 
diagram shown in Fig. 3. For radiation from the negative x3 direc
tion, the transmittance and the reflectance of the half layer are at 
the lower slab boundary 

/. -
4 s , s , 

f, - b. 

Pi = 
l); 

(32) 

(33) 

and for radiation from the positive 1-3 direction, the transmit
tance TI' and the reflectance pi' are given as: 

/'< 
4.SVSV, 

1 - A - fi, 

Pi = b, + 
4,s. s'>.= 

(34) 

(35) 
- h, -2.s- : : 

S35, and s36 are the flux com-where fly blt S l, f2, b2, s2, f%, b3, s3, 
ponents defined in Fig. 3. 

Optical Properties of a Slab. The path of the diffuse radia
tion for a combination of two layers may be represented schema
tically by Fig. 5. The general case of two nonhomogeneous layers 
will now be considered. The optical properties for irradiation from 
the negative x3 direction are denoted by a superscript prime. The 
radiant energy incident on surface 1 from below is partially re
flected {pi), partially absorbed (ai), and partially transmitted 
(n ) by the first layer. Of the transmitted fraction (TI) falling on 
layer 2, TI/;2 is reflected back to layer 1 and TIT2 is transmitted 
through the second layer. When np2 reaches layer 1, the new 
fraction T1P2T1' is transmitted and r\pip\ reflected etc., as indi
cated in Fig. 6. By summing the transmitted and reflected frac
tions, the transmittance and reflectance of the combined layer 12 
are 
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LAYER 2 

LAYER i 

LAYER 2 

LAYER 1 

OUTPUT 

Fig. 5 Reflectance and transmittance of two nonhomogeneous layers 
(a) incident radiation on layer 1, (b) incident radiation on layer 2 

7,2 • i '- lv/v" 

r . ' f t 
lh-i ••- P i + 

(36) 

(37) 
1 - ftPi' 

The corresponding equations for radiation incident on layer 2 
from the positive x3 direction are 

i-h 

1 - fhp^ 

T2 Pi 
(hP\ 

(39) 

where TI, n ' . Pi, Pi'; TI, TI , Pa, P2'; r12, T 2 I ' , P12, P21'. the 
transmittances and the reflectances for layer 1, layer 2, and the 
combined layer 12. 

Equations for three layers can be obtained by considering two 
adjacent layers as behaving like a single layer with properties as 
given by equations (36) to (39). This layer is then combined with 
the third layer. By continuing this process, the transmittance and 
reflectance of a slab n-particles thick but containing (n - 1) ho
mogeneous layers and two half layers can be determined in terms 
of the optical properties of the individual layers. 

From physical consideration, the transmittance and reflectance 
of the slab built from the flux diagrams and the properties of a 
single layer should be the same as those given by the continuous 
model (e.g., two-flux model). For a slab n-particles thick (L = 
nD), the parameters K and S can be expressed in terms of the 
transmittance T and reflectance p by solving equations (5) and 
(6): 

A' -

1 
2,i D 

1 

TiT> v v 

_2p\ 
•2p 

2[> 

2(, 
sin Ir 

2 p \ t / 2 

4p" 

sin //" 
(y2 - 4p2) 

whe re 

P -

(40) 

(41) 

(42) 
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SPECIFIED ? 
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[ s P E c l F T j H F j ^ a D i N F s U R M C E ] 

JEZI 
SPECIFY AN AREA 
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SPECIFY A RAY 
DIRECTION 

L£ 
DOES THE RAY 
HIT SOLID 
SURFACES 1 

HAVE ALL THE 
RAYS PASSING 
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AREA ELEMENT 
BEEN TRACED ? 

,, 

IS THE REFLECTED 
ENERGY WEAK ? 

J_REFLEaEDF 
DETERMINE THE 
INTERSECTING POINT 
AND THE REFLECTED 
DIRECTIONS 

FIND THE INTER
SECTION BETWEEN 
THE RAY AND 
THE OPEN SURFACES 

RECORD 

Fig. 6 Flow chart , the ray tracing program 

Results and Discussions 
The flux components of the unit cell for various particle emis-

sivities (0 < tp < 1) were obtained by the method described 
previously. In order to compare with the experimental results of 
Chen and Churchill [11], computations were carried out for emis-
sivities of 0.4 and 0.28 which correspond roughly to the steel and 
the alumina particles used in the experiment. 

A simplified flow chart for the ray tracing computation is 
shown in Fig. 6. For the unit cell of the regular layer, the enclo
sure consists of eight sections of spherical surfaces and six seg-

D = 

D'^y-ZLVTCHD7) 

Fig. 7 Area e lements of the incident surface 
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Table 1 The flux componen ts of a unit cell in 
a regular layer 

^article 
emis-
sivity 
1.0 
0 .5 
0 .4 
0. 28 
0 . 1 
0 .0 

f 
0.059 
0. 114 
0 .131 
0 .158 
0 .213 
0 .257 

b 
0 .0 
0 .010 
0 .015 
0.024 
0.047 
0 .071 

s 
0 .0378 
0 .0701 
0.0809 
0.0976 
0 .135 
0 .167 

1 — a. 
0 .790 
0 .595 
0 .529 
0 .428 
0 .201 
0 

merits of planar open surfaces of irregular boundaries (Fig. 2). 
The open surface through which the incident radiation passes is 
divided into small area elements as shown in Fig. 7. For simplici
ty, only four divisions for each side are shown, in order to main-
lain almost the same area for each element, the incident surface 
is divided up in the following way. Consider the quarter bounded 
by the positive y.\ and r2 axes and the circular arc. The quarter is 
divided into three sections a square section whose side is I)/2(l 
- \j\ 1) and two equal irregular sections. The square section is 
divided into equal area elements bounded by two orthogonal sets 
of equally spaced straight lines. These horizontal and vertical 
lines are extended into the two irregular sections, and their inter
sections with the circular arc generate the opposite orthogonal set 
of dividing lines in the irregular sections. For example, if the ra
dius (l),rl) is normalized and if jri = c is a vertical line in the 
square section, then from geometrical considerations. x2

 = 1 — 

\ z(2 - z) is the corresponding horizontal line generated in the 
irregular section. For uniformly diffuse irradiation, the amount of 
energy received by each element is proportional to its own area 
A.4. The hemisphere over the area element in the direetion of the 
incident radiation is divided into small discrete solid angles Aa;. 
According to Lambert's cosine law, the energy contained within 
the solid angle will be proportional to A/4, Aai, and cos I) where I) 
is the angle between the surface normal and the solid angle. The 
amount of energy traveling in a given direction is described in 
terms of a ray vector whose initial point is the centroid of the 
area element and whose directions are given by the directional 
cosines (sin I) cos >A, sin II sin </<, cos II). where t\> is the azimuthal 
angle. 

In three-dimensional space a sphere is defined by its center 
f*i'. s2 . ss') and its diameter I). The mathematical function for a 
spherical surface is 

Table 2 The flux componen ts of a unit 
cell in a half layer 

0 
0 
0 
0 
0 
0 

Part ic le 
em is-
sivity 
1.0 
0 .5 
0 .4 
0 .28 
0 . 1 
0 .0 

h 
0.426 
0.584 
0 .6238 
0.6759 
0.765 
0.8229 

In 

00145 
001965 
002685 
00412 
00511 

h 
0.0916 
0. 1 26 
0 .1345 
0.1459 
0.1655 
0.1782 

b-i 

0 
0 
0 
0 
f) 

0 

S;i 

0.01.40 
0 .0206 
0.0222 
0 .0243 
0 .0278 
0.0306 

0 
0 
0 
0 
0 
0 

7 

l>, 
0 
0 .206 
0.2556 
0.3176 
0.4243 
0.4913 

sy 
02013 
02928 
03.1.7 
0348 
0406 
0443 

'S':;:i 

0.412 
0.560 
0.5972 
0 .6435 
0 .7222 
0 .7731 

,9, 

0.04292 
0.0593 
0.06303 
0.06823 
0.0766 
0.08213 

1 — CO{)2 

0,493 
0.2986 
0 .25 
0. 1.852 
0.0723 
0 

S.10 

0.0412 
0.0579 

0 
0 
0 
0 
0 
0 

0 .06041 
0 .0678 
0 .0778 
0 .0845 

2 

1 — woi 

0.737 
0 .429 
0 .3573 
0 .263 
0,1022 
0 

U 
0306 
0470 
05139 
05741 
0681 
0755 

1 — C0()3 

0 .488 
0 .292 
0 .2431 
0 .1801 
0 .0708 
0 

E U; - V)" 
i - i 

and the surface normal vector n is 

- <S 2{.xf 

(A/2) 

D 

(43) 

(44) 

where <"', is the unit vector in the x, direction. For a ray whose ori
gin is at (a\, a-2, (i;0 and whose directional cosines are h, 12, h, the 
criterion for the existence of an intersection between it and the 
sphere is 

11 }J U( .S; ' - ((;) 
i = t 

0 (45) 

Except for tangential intersection, there will be two mathemati
cal intersecting points. The physical intersection is the one hav
ing the shortest distance and this value is given by 

'i - ( E M V - «,-)! 11 (46) 

In order that the intersection lies within the region of the spheri
cal surface defined by the enclosure, the coordinates x{. x2', X3' 
have to satisfy the following criteria: 

-v,.' -•- }I)/2 ] / = : 1 .2 ,3 (47) 

where i f , X2 , X3' and the directional cosines of the reflected ray 
are determined by the equations outlined in Section entitled 
"Scattering and Absorption of a Unit Cell." At each intersection, 
part of the energy carried by the ray is absorbed by the surface 
wdiile the remainder is carried away by the reflected ray. This 
process is repeated for the reflected ray until either the ray has 
lost most of its energy by multiple reflections or the ray escapes 
from the unit cell by striking one of the open planar surfaces. 
These six planar surfaces are defined by the following mathemat
ical function 

.v, -... -t D't j -.: 1, 2 , 3 (48) 

By tracing all of the rays which pass through the area elements 
of the irradiated surface, the distribution of energy leaving the 
unit cell through each open surface can be determined, and the 
flux diagram characteristic of the unit cell can be constructed. A 
"computer program was developed to perform the necessary calcu
lations. The effort involved in the computation and the accuracy 
of the result are a direct function of the number of rays traced. 
The result becomes exact as this number approaches infinity. 
However, in order to keep the computer time within a reasonable 
limit, the number of the rays is chosen in such a way that further 
increase of this number would not improve the accuracy by more 
than five percent. The computations have been carried out for 
eight divisions of the side of the incident surface, sixteen divisions 
of the angle 6, and thirty-two divisions of the angle <p. The results 
are shown in Tables 1 and 2. 

In the evaluation of the radiative properties (i.e., transmittance 
and reflectance) of a layer, the distribution of energy leaving the 
unit cell through each open surface has been assumed to be dif
fuse. To check this assumption, the directions of the rays reach
ing the open surface were recorded in the ray tracing process. It 
was found that for particles of emissivity equal to unity, the scat
tered rays were collimated in certain directions. For other particle 
emissivities (because of the multiple reflections within the unit 
cell) the energy was distributed diffusely on each open surface ex
cept for the directions near the surface normal of the forward 
component. In practice the random orientation of the particles 
would also tend to make the energy scattered in a diffuse manner. 
Transmittance and reflectance computed from equations (29) to 
(35) for the regular and the half layers are presented in Table 3. 
The radiative properties for a series of layers were obtained by 
the above indicated method for multiple layers. 

The numerical techniques for calculating the parameters K and 
S from equations (40) and (41) involve the computation of the 
transmittance T and reflectance i> for increasing slab thickness 
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Table 3 Transmittance and reflectance of a regular layer 
and a half layer 

'article 
emis-
sivity 
1.0 
0 . 5 
0 .4 
0.28 

Regulai 
T ! 

0.0656 
0.141 
0.1688 
0.2192 

layer 
pi 

0.0066 
0.0367 
0.0528 
0.0852 

0 
0 
0 
0 

Tl 

0989 
141 
152 
166 

0 
0 
0 
0 

Half 
pi 

0739 
349 
418 
510 

layer 
Tl 

0.461 
0.655 
0.705 
0.774 

pi' 

0.00347 
0.00728 
0.00852 
0.0103 

0 . 1 
0 . 0 

0 .368 
0 .587 

0 .202 
0 . 4 0 1 

0.192 
0 .210 

0 .672 
0 .779 

0 .869 0 .0141 
0 .977 0 .0168 

until K and S converge to their asymptotic values. Convergence 
usually requires a slab which is about ten layers thick (n = 10). 

Equations (40) and (41) indicate that K and S" are inversely 
proportional to the particle diameter D since T and p afe not 
functions of the diameter. This result agrees with the experimen
tal observation [11] and with the rough estimate based on the Mie 
theory of single scattering. The Mie theory predicts that the scat
tering cross section of a large sphere is proportional to D2. Thus 
the volumetric extinction coefficient should be proportional to 
ND2 where N is the number of particles per unit volume. Since .V 
is equal to o s u s " \ where 5S is the solid fraction and vH is the vol
ume of the particle, the extinction coefficient is thus proportional 
to SsD"1. While the predicted trend for the dependence of K and 
S on emissivity appears to agree well with the experimental [11], 
the discrepancy between the predicted and the measured values, 
however, is quite large. Generally speaking, the predicted absorp
tion coefficient is much higher while the scattering coefficient is 
lower than the corresponding experimental values. This large dis
crepancy can be attributed to the fact that in the experimental 
system, a thin slab of two or three layers of spheres was involved 
and there exists a considerable portion of energy passing through 
the slab without encountering the absorption and scattering pro
cess assumed in the analysis. This direct radiation channeling 
results in smaller values for the absorption coefficient but larger 
values for the scattering coefficient than the predicted. In actual 
applications, however, numerous layers of randomly packed 
spheres are involved and the direct radiation channeling effect is 
negligible. Therefore, in such cases, a better agreement between 
the predicted and the measured radiation properties is expected. 
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Investigation of a New Simple Transient 
Method of Thermal Property Measurement 
New transient solutions ore derived for the simple calculation of thermal conductivity, 
specific heat, thermal cliff usivity and contact conductance from the results of a single ex
periment. All the proposed experiments utilize a specimen which has one surface 
insulated and the opposite one lieated by an arbitrary heat flux. The heat flux must 
have a finite duration and its integrated value must be known. Two types of experiments 
are discussed and measurements for each type are given. One type, uses a flat, thin elec
tric heater and the other uses a material of known specific heat as a calorimeter. Rela
tive advantages are discussed. 

1 Introduction 

H IUMKKOUS METHODS for measuring thermal properties 
have been proposed over the years. Most of these methods are 
for measuring a single thermal property at a time, and they us
ually utilize simple exact solutions for steady state and transient 
cases. (Many of these are discussed in [I].1) A departure 
from these methods is discussed in papers by Beck [2-4], Pfahl 
and Mitchel [f>, 6] and others in which the digital computer is 
used in data analysis and a digital data acquisition system is re
quired. These latter methods can be used to estimate several 
parameters at one time. 

The method discussed herein is similar to the classical method 
in that the working equations for estimating the parameters are 
relatively simple. This method requires the integration of some 
signals which can readily be accomplished by using currently 
available integrated circuits. An advantage of this method is 
that one surface of the specimen is simply insulated. The op
posite surface is heated uniformly over its surface but can be 
heated arbitrarily in time. The total heat added must be mea
sured, however. After performing the straightforward experi
ment just described, simple algebraic expressions are used to 
calculate thermal conductivity, thermal diffusivity, specific, heat 
and contact conductance. All these properties can be deter
mined from a single experiment. 

The methods are also important since the experiments are 
usually of short duration—on the order of seconds or minutes 
rather than hours. Some simple experiments are described that 
can be performed in many heat transfer laboratories. 

1 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division for publication (without 

presentation) in THE JOUBXAL OK HEAT TIUSSFEH. Manuscript re
ceived bv the Heat Transfer Division June 21, 1973. Paper No. 
74-HT-E. 

Experiments of short duration provide several unique ad
vantages. One can test materials which might otherwise dry 
(biological materials, for example) or degrade using conventional 
slower methods. Also, a rapid method is needed for thermal 
testing of materials being continuously produced. 

2 General Theory 
Consider the mathematical problem for the temperature T of 

the specimen being cither a flat plate (n = 0), long cylinder (n = 
1) or sphere (n = 2), 

1 
" ( 
dr \ 

± A-

AT" — 
, br 

dT(n„ 

dr 

) 

0 

= pc, 

= (fit 

dT 

Ut (1) 

(2a) 

where q(t) ^ 0 for 0 < t < i.„ 

— 0 otherwise 

— sign for rh < r;„ 

+ sign for rn > r;„ 

£>r(/u„ t) 

Or 
= 0 

Tir, 0) = 7'i 

(2b) 

(2c) 

where rh is the location of the heated surface, rin is that of the 
insulated surface and /,„„ is the maximum duration of the heating 
(see Fig. 1). The arbitrary heat flux (fit) has a nonzero value only 
between / = 0 and /„„„ as shown in Fig. 2. The thermal conduc
tivity k and specific heat cp in (1) can be considered to be func
tions of temperature. At a certain point below, the assumption 
is made that k is constant. 
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Fig. 1 Various geometries with one surface heated and the other in
sulated: (a) Hollow sphere on long cylinder heated at outside surface 
(Fig, 1(a) reduces to aso lid sphere or cylinder if nH goes to zero); (b) 
HoHow spnere on long cylinder heated at inside surface; (c) Plate ge
ometry 

Integrate (I) first over lime from t = 0 lo °° and then over r to 
obtain 

•77 

Fig. 2 Arbitrary heat flux q(t) for which fm;ix is finite and Q 

q(f) df is known 
Jo 

r" j A- - - dl = - I 

Jo dr " + l Jr. 
pcJT + (', (','M) 

where T, is the initial temperature and T / is the final (equilib
rium) temperature. Integrate (2a) and (26) over / from zero to 
infinity to get 

2.1 Thermal Conductivity. Assume in ('•>) that tile thermal con
ductivity A- is independent of temperature, then divide (.">) by r", 
integrate between r, and r->, and solve for A yielding the general 
result 

Jo °'' Jo 

= 0 

qU)(H = Q (36) 

(3c) 

. Ql'h" _. 

I 
Cn dr' 

m 
[7'(n, /) - Tir2, n}dt 

where <p(r) is defined by 

Jo 
cj)(r) = I T(,r, l)dt. 

' o 
'lid) 

E v a l u a t e (3a) at n, and use (36), then e v a l u a t e (3a j a.t ;•;„ and use 
(3c) to find 

nn{±Q) = •• "--;--; j pc.xl'T + (.', (4a) 

n + 1 JT 
pCpdT + ('• (46) 

which could be considered as two simultaneous equations with the 
two unknowns being C\ and the integral. Solving them gives 

which is valid for temperature-independent k in plates (n = 0), 
solid and hollow cylinders («. = 1) and solid and hollow spheres 
(n = 2). Note that A is independent of any temperature de
pendence of e,,. 

This analysis can be extended by assuming that A is, for ex
ample, a linear function of temperature. For small variations of 
A in a given experiment one finds that A should be evaluated at 
the time average of one-half of T(r,, I) + '/)'(>,, /.), which can be 
approximated by (T, + T f)/2. 

2.2 Thermal Diffusivity. All expression for thermal diffusivity, 
defined by k, pcP, can be derived using the preceding analysis even 
if Q is not known. In (4a) and (46) Q and O are considered to be 
the unknowns. Assuming that A and p are constant, the thermal 
dii'fusivitv a. can be derived: 

J: 
T< ,„, (n + l)n"Q 

PC-1.UL = -
;rh"'rl — ; • ; „ " * ' 

Co — v- -- ^ 

\ r h
n ' r l — r i n " •• 

I n t r o d u c e (4c) and (Ad) in to (oft) to find 

i; A dl = i 
dr >rh"*> - rUl"

+i\ 

(4c) 

iM) 

C i n » + l ] . (O) 

1 

n + 

pc, f {Tin, 
J o 

TO 

(la) 

1) - T(r->, t)]dt 

where 

-1- r c„dT (76) 

This result can be further integrated after an assumption is made 
regarding the temperature dependence of A. 

which also applies for plates, cylinders, etc. If Q is not known, a 
can be found but k and c„ cannot be; also, a is unaffected by any 
errors in Q. 

•Nomenclature-
cP = specific heat 

h = contact conductance 

k = thermal conductivity 

/, = thickness of plate 

n — 0 for plate 

n = 1 for cylinder 

>i—2 for sphere 
<l = lient flux 
Q = integrated heat flux 
r = radial coordinate 

t\ = location of thermocouple number 1 
r,, = location of thermocouple number 2 
ri, = location of heated surface 

/'„, = location of insulated surface 
/ = time 

T — temperature 
Tf = final temperature 
T, = initial temperature 
a = thermal diffusivity 
p = density 
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2.3 Specific Heat. For the case of constant density but temper
ature variable c,,, the average specific heat between temperatures 
7", and 7'/is defined by (76). By using (4c) one obtains 

p fr,," 

in + 1 )rh"Q 
(8) 

which is independent of any temperature dependence of k. 
2.4 Calorimeter Method of Measuring Q. There are a number of 

ways to measure Q. One way is to use electric heating (see Sec
tion o). A simple method, particularly for the flat plate geom
etry, utilizes as a calorimeter a material with an accurately known 
density-specific heat product (see Section 0). Its thermal con
ductivity need not be known but it is most effective to choose a 
material with a large k. In addit ion to being simple, this met hod 
provides a heat flux which is of reasonable value for all materials 
(something that is difficult to achieve using electric heaters with 
high-A' specimens) and which approximates the optimum heat 
flux [.'>]. The optimum heat flux would cause the specimen's 
heated surface to take a step rise in temperature; this flux is 
initially very large and then decays to zero. Unlike the method 
of electric heating, such a method could be used to either heal or 
cool the specimen. 

The calorimeter is initially at a different uniform temperature 
than the specimen. It is insulated at all surfaces except the flat 
surface which is brought into intimate contact with the specimen. 
The specimen and the calorimeter would be allowed to come to 
an equilibrium temperature. During this process the heat trans
ferred from the calorimeter would be exactly the same as the 
amount going lo the specimen (provided there are no heat losses). 
Then Q is for the flat plate geometry 

Q = pcLccpJT„c - Tr) (».) 

where the c .subscript refers to the calorimeter and c,,,c. is the 
specific heat of the calorimeter evaluated at the average tem
perature (?',-,c + T f)/'2. 

Tn order to promote intimate and uniform contact between the 
calorimeter and the specimen some fluid such as wafer at room 
temperature or silicone grease at higher temperatures is frequently 
used. 

2.5 Thermal Contact Conductance. W i t h the flat p l a t e g e o m e t r y 

of a calorimeter and specimen mentioned in Section 2.4 one might 
be interested in the measurement, of contact conductance of the 
film between the surfaces or between bare surfaces. If the sur
faces are bare (permitting the calculation of the conventional 
conductance h), several thermocouples should be placed at the 
mating surfaces to belter measure the average interface tempera
tures. 

Suppose that temperatures are measured at the mating sur
faces. (It is possible to extend the analysis for other measure
ment locations using the analysis given in Section 2.1.) A con
tact conductance. It, is defined by 

<•/(/) = h[Tc(0, t) - 7'(0, 0] (10a) 

where the surface temperature of the specimen does not have a 
subscript. Integrating over time gives Q, 

Q f M7V(0, 
Jo 

0 - T(0, t)}dl (106) 

A weighted average contact conductance It is now defined by 

f h[Tc 
Jo 

(0, t) - 7'(0, t)]tll 

(0, 0 - 7'(0, ()}dl I lX(0, 
Jo 

Q_ 

l) ~ 7'(0, l)]dt 

(11) 

which could be used for any geometry considered in the preceding 
involving two materials with imperfect contact. In practice this 

result would usually be restricted to plates since the uniform 
interface conditions are more difficult to obtain for other config
urations. 

3 Applications to Various Geometries 
3.T Flat Plate. The simplest, and usually the preferred, geom

etry is the flat plate. The analysis of the previous section can 
be applied by letting r = x, r, = .(-,, r2 = x?, r,n = /,, r-h = 0 and 
n - 0 (see Fig. l(ci). Using these relations (0) yields the ther
mal conductivity for a plate heated at x = 0 and insulated at 
x = /.: 

].<J 

k = 21 " 
J o 

- 1 

7'(.t'i, l) - T(x2, t)\dt 

(13) 

The thermal dif'fusivity could be found if Q were not known; 
mil ('a.) it is given by 

mrf - r,, 

2 f "•"•• 

(14) 

0 ~ Tlx-i, t)]dt 

The terms in the brackets of the numerator of (14) reduce to the 
value of unity for .f! = ()and.r-> = L. 

The specific heat is found from (S) to be 

Q 

pUTf - Ti) 
(15) 

The calorimeter method for finding Q can be implemented by 
using (9) and the contact conductance is given by (11). 

3.2 Solid Cylinder. For a long solid cylinder heated uniformly 
over the surface at r = rk, the relations n = 1 and r-ul = 0 are 
used in (0), (7a), and (8) to obtain 

Qr„ 

Jo 
(>-., /) - T(rit t)]di 

r,MT T.) 

f [Tin, 
Jo 

l) - T(rh t)]dt 

-2Q 

prhi'Tf - Ti) 

(16) 

(17) 

(18) 

Provided temperature and position measurements can be made as 
accurately at r = 0 and rh as elsewhere in the cylinder, the best 
locations for measurements are n = r;, and r-> = 0. For 
these locations the bracketed terms in the numerator of (16) and 
(17) reduce to value of unity. 

3.3 Solid Sphere. For the solid sphere, n = 2 and rin = 0. 
Equation (10) applies for this case; the factor 4 in the denomina
tor of (17) becomes (i; and the factor 2 in the numerator of (18) 
becomes o. Again the optimum measurement locations are at 
n = Th, n = 0. 

3.4 Hollow Cylinder. Some experimentalists prefer to utilize 
radial heat flow in a long hollow cylinder. Assume that the 
cylinder is heated at rh and is insulated at /•;„. Then use n - 1 
in (0) to obtain for k 

k 

I 
Qrh - nm_i\c 

(Jin, I) - T{n,t))dt 

(19a) 

where 

Journal of Heat Transfer FEBRUARY 1974 / 61 

Downloaded 25 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Ac 

R = 

Ri2 - AY - 2ft2 In - -
A 2 

2(A - 1)(A2 - 1) 

A, 
n. A2 = 

(196) 

(19c) 

Note the absolute value sign in (19a) which permits the solution 
to lie valid for n, either greater or less than ?-;„ (0 < R < =°). 
The measurement radii n and r2 should be between n„ and ;>,; 
mathematically for rh > r;„ (healed outside) 

ft < R\ < 1; R < Ri < 1 

and for rh < r in (heated inside) 

1 < h\ < R; 1 < R, < R. 

For the special case of n = r> or A\ = 1 and r2 = n„ or Az = ft 
(optimum values of n and r2) the expression A,- in (196) is plotted 
in Fig. 3. It is equal to 0.5 at ft = 0 (which corresponds to a 
solid cylinder) and at R = 1 (which corresponds to a Hat plate). 

The thermal diffusivity from (7a) becomes 

k 

T(rh t) - T(r2, t)]dl f " 
Jo 

'(R + l )A r ' 
(20) 

and the average specific heat is 

2Q 

(A + \)(TT 

(21) 
Pin - ruy(R + 1 KTf - Ti) 

3.5 Hollow Sphere. For the hollow sphere n = 2, k is given by 

Q\rh — riu]A, 
k = 

/ ; 

(22a) 

{T{rh t) - T{r2, l))dt 

where 

2(1 - A')(f t3~-T) 
(226) 

For the special case of n = r4 and r2 = r iu, A, of (226) is plotted in 
Fig. 3. The maximum As value occurs at A' = n„ :'i'h = {\'?> — 
1 )/2 = 0.366. This is the case of a hollow sphere heated at the 
outside surface. 

The thermal diffusivity a is similar to (20) except that brack
eted term now becomes 

sphere, A 

Fig. 3 Ac given by equation (19b) and A , by equation (22b) plotted for 
R, = 1 and R2 = R 

{R*_+_R + 1)A8 

3 

The average specific heat for a hollow sphere heated either 
inside or outside is 

3Q 

p\rh ~ rin\{R- + A + l){Tr- Tt) 
(23) 

4 Optimum Geometry For Determining k or « 
The optimum geometry is a hollow sphere which is heated 

from the outside; the improvement over the plane geometry is not 
large, however. The optimum experiment would have thermo
couples located only at the heated and insulated surfaces and a 
heat input which causes the healed surface of the specimen to 
take a step increase. 

5 Electric Heater Device 
Several devices based on the preceding theory for the flat plate 

geometry have been built. Some typical results for measure
ments of k and c,, for Pyrex glass are given in this section for a 
device using a thin silicone rubber heater. This device included 
an electronic integrator to integrate the thermocouple signals. 
A tinier was used to provide a l."> see duration heating cycle. 

The measurements were made using a digital voltmeter (IJVM) 
with a range of ±1.999 v. The initial and final voltages of a 
thermocouple were recorded. During the test the voltage dif
ference of the two thermocouples on either side of the specimen 
was observed (but not recorded). When this voltage difference 
was almost zero, the integrator was set on "hold" and the value 
read. A three turn switch was used in order to permit using a 
single DY.M to measure the (1) temperature difference, (2) 
specimen temperature, and (3) integral of the temperature dif
ference which was on stations No. 1, No. 2, and No. 3 of the 
switch, respectively. 

For the foregoing measurements only two thermocouples were 
needed. In order to assure more uniform heating and also to 
avoid affixing thermocouples to the specimen which is 0.4 in. 
thick and 2 in. in diameter the thermocouples were embedded 
in two 2 in. dia, ' i6 in. thick copper disks. (If t he specimens have 
high values of k, then it is necessary to attach thermocouples 
directly on the specimen because then the temperature drop in the 
silicone grease between the specimen and the copper disk would be 
important.) One disk was attached to one side of the specimen 
anil the other disk to the other side by using silicone grease. 
Another specimen-disk combination, but without thermocouples, 
was also made. The heater was placed between the two speci
men-disk combinations and again silicone grease was used. Sili
cone grease will hold the composite together without pressure 
during the tests if it is squeezed together by hand pressure before
hand. The specimens were placed inside an insulated "can" 
which was not temperature controlled. 

About ti thousand individual tests have been run. Typical 
uncorrected results are given in Table 1 which were selected 
from those run one afternoon over a period of two hr and 17 
min or an average, of one test every 3.1 min. Ivach test took 
about 75 sec. 

Because the tests can be run so rapidly, many have been run; 
however, the.tests are by no means optimized experimentally as 
yet. For this reason, and the fact that no corrections have been 
applied, the potential accuracy of the method should not be 
judged on the accuracy of the k and <> values given in Table 1. 
(The k values are within a few percent, but c,, becomes quite in
accurate.) Insight into the simplicity, precision and speed of the 
method can be gained from Table 1, however. 

Columns b-c give the voltages read before and after the experi
ment with the switch on No. 3 and No. 2. During the test itself 
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Table 1 Uncorrected thermal conductivity and specific heat calculat ions for Pyrex glass 

a 

Test 
No. 

1 
2 
3 
4 

15 
30 
42 
43 
44 

6 
Initial 

integrator 
(No. 3) 

- 0 . 1 5 0 
- 0 . 1 5 0 
- 0 . 1 5 0 
- 0 . 1 5 0 
- 0 . 1 5 0 
- 0 . 1 4 9 
- 0 . 1 4 9 
- 0 . 1 4 9 
- 0 . 1 4 9 

c 

Start 
(No. 2) 

- 0 . 1 8 2 
0.048 
0.255 
0.444 
1.845 
2.61 
2.74 
2.75 
2.77 

d 

Finish 
(No. 2) 

0.059 
0.275 
0.470 
0.650 
1 .984 
2.71 
2.84 
2.85 
2.87 

e 
Final 

integrator 
(No. 3) 

- 3 . 5 2 
- 3 . 5 1 
- 3 . 4 9 
— 3.53 
- 3 . 4 7 
- 3 . 4 0 
- 3 . 4 2 
- 3 . 4 1 
- 3 . 4 0 

/ 

d - c 
A V„ 

0.241 
0.227 
0.215 
0.206 
0.139 
0.10 
0.10 
0.10 
0.10 

9 

b - e 
<iF, 

3 .3)7 
3.36 
3.34 
3.38 
3.32 
3.251 
3.271 
3.261 
3.251 

h 

c„ 

0.316 
0.336 
0.355 
0.370 
0.549 
0.763 
0.763 
0.763 
0.763 

i 

k 

0.602 
0.604 
0.608 
0.600 
0.611 
0.624 
0.620 
0.622 
0.624 

Table 2 Summary of thermal properties of Armco iron measured using the calorimeter heating method 

Temperature 

Total No. tests 

k 
est. std. dev. (A) 
fc(TPItC) 

est. std. dev. (<rz) 
c„(TPRC) 

75 deg F 
(6 drops 

of water) 
9 

42.54 
0.943 

41.5 

0.1089 
0.00211 
0.108 

75 deg F 
(0.035 in. 

silicone grease) 
14 

41.56 
1.110 

41.5 

0.1080 
0.00095 
0.108 

300 deg F 
(0.015 in. 

silicone grease) 
3 

37.57 
0.87 

36.5 

0.1415 
0.00012 
0.120 

400 deg F 
_ (0.015 in. 

silicone grease 
4 

34.45 
0.99 

34.0 

0.1325 
0.0309 
0.130 

the switch is on No. 1 which is for the temperature difference 
across the specimen; when this difference is sufficiently small the 
test is terminated, but no readings are recorded for the tempera
ture difference. The equations used for calculating k and c„ are: 

A- = 2.029/AFi c„ = 0.076 'A V,„ 

which contain certain constants characteristic of the integrator 
and the energy provided by the heater. AFi and AF5 , , are 
found by subtracting the voltages indicated in Table 1. In these 
tests the reference temperature is room temperature so that a 
voltage of 0 in columns c and d of Table 1 corresponds to 75 deg 
F; from the calibration curve of iron-constantan thermocouples, 
3 v corresponds to about 100 F deg above the ambient tempera
ture. 

In terms of precision, the A: values appear to be excellent with 
less than ± 1 percent variation at a given temperature level 
(compare columns c and ;')• On the other hand c„ is very sensi
tive to heat losses as the temperature increases, but reproducible 
values are obtained when the temperature approaches a maxi
mum as for cases 42-44. Over a 100 F deg span, k and c„ should 
be relatively constant for Pyrex glass. Hence the uncorrected 
values for A' in Table 1 may be accurate, but the cp values 
cannot be since there is a factor of over 2 in the values. 

Accurate experimental results should incorporate all reasonable 
corrections. Since heat losses are sufficiently large to cause the 
specimen to approach an equilibrium temperature, heat losses 
must be considered. This effect is greatly reduced for the con
ductivity by zeroing the temperature difference before each run. 
Also, it can be shown for k that the copper plates on either side 
of the specimen have no effect except for the temperature drop 
in the silicone grease layers on either side of the specimen. 

The errors in c,, are large in Table 1 due to heat losses. Correc
tions could be made, but they appear to be too large to permit 
accurate results. One way to measure cp more accurately is to 
reduce the heat losses by maintaining the insulated specimen can 
near the specimen temperature. This was done for the appara
tus described next. For the thermal conductivity the electric 
heater method described appears to be simple, accurate and rapid 
even without controlling the can temperature. 

6 Calorimeter Method 
Tests were run using the calorimeter method of measuring Q 

which is discussed in Section 2.4. The calorimeter was made of 
OFHC copper and the specimen was Armco iron; each was 3 in. 
in diameter while the copper was 0.75 in. thick and the iron was 
1.0 in. thick. One thermocouple was attached to the calorimeter. 
Three thermocouples were embedded in the heated surface of the 
iron and the signals were averaged. Each thermocouple was 
attached by placing the thermocouple leads in 0.010 in. X 0.010 
in. X 0.375 in. grooves. The grooves were parallel for a given 
thermocouple and about 0.125 in. apart. The leads were care
fully peened tightly into the grooves. It was found that thermo
couples attached in this manner can give accurate surface tem
peratures provided water or silicone grease is carefully applied 
before the calorimeter and specimen are brought together. At 
the thermally insulated surface a single thermocouple was used. 
Because this thermocouple must be electrically insulated from 
the specimen in order to perform the temperature difference 
electrically, the leads were welded together and placed in a hole 
0.030 in. in diameter and 0.06 in. deep. "Astroeeram" cement 
was used to attach the thermocouple. 

A hydraulic system was used to bring the calorimeter and 
specimen together under pressure. Four different sets of heaters 
and temperature controllers were used: one set for the speci
men, another for the calorimeter, one for the furnace surrounding 
the sides and bottom of the specimen and the last for a furnace 
surrounding the calorimeter. 

A summary of results of some tests for Armco Magnetic Ingot 
Iron for DC Applications is given in Table 2. In addition to the 
average of the measured properties, the estimated standard devia
tion and the TPI iC values [7] are given. The estimated stan
dard deviation for k is given by 

Ok = £ ky!:(n - 1) 

where n is the number of tests and k is the average. A similar 
expression is used for <rCp. 

In the first set of room temperature tests (see the first column 
of Table 2), six drops of water were placed at the center of the 
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specimen before bringing the specimen and calorimeter together. 
In all the other sets of tests a 0.01 ">-in. film of silicone grease was 
carefully applied using a "comb." There is a 2.4 percent dif
ference between the k values measured using water and silicone 
grease and a 0.S percent difference in the c„V. For both k arid 
<;,, at 75 deg F, the silicone grease values are more accurate (if 
the TPHC values are taken to be the true values). In fact, 
the values are so close that, the differences between the mea.su.red 
values and the TPHC values are less than the accuracy of read
ing the TPHC graphs. Only the silicone grease can be used at 
the higher temperatures. 

The agreement with the TPHC data for the 300 deg and 400 deg 
F tests is also good except for the 300 deg F cp value which is too 
large. The thermal conductivity like that in the electric heater 
method is much less sensitive to heat losses than the specific heat. 

The experimental procedures given above are not recommended 
on the basis of accuracy since accuracy depends on the experi
menter's skill and the development of the particular method. 
Hat her the methods are recommended for the following reasons. 
Several properties can be simultaneously found from a single test. 
The tests are potentially inexpensive to perform because they are 
transient. Because of t he brevity of the tests, biological products 
can be investigated before significant drying, etc., occurs. A 
large range of materials can be investigated; the ratio of the 
thermal diffusivity of Armco iron and Pyrex is nearly 100, but 
even more diverse materials have been investigated such as 
potatoes and aluminum. 

7 Comparison of the Two Experimental Methods 
The electric heater method is much simpler to use and the 

equipment is less expensive. It is recommended for these reasons. 
It is, however, limited to heating only and the temperature range 
is dependent upon the silicone rubber which cannot, be heated 
above 450 deg F. Other materials can be used to extend this 
range. The calorimeter method can be used to either heat or 
cool and can be used for a very wide temperature range which is 
limited by the abilities to measure transient temperatures and 
to bring a calorimeter into thermal contact, (not necessarily physi
cal contact, however) with the specimen. 

8 Summary and Conclusions 
New transient, solid ions of the. one-dimensional heat conduction 

equation for plates, cylinders and spheres are given that are par
ticularly convenient for obtaining several thermal properties 
from a single experiment. AH the proposed experiments utilize a 
specimen with an insulated surface and a heated one which is 
exposed to an arbitrary heat flux of finite duration but whose 
integrated value is known. 

Two different types of experimental equipment are described 
and property measurements obtained from each are given. The 
experimental method rising a thin electric heater is particularly 
attractive due to its simplicity in operation. 
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Two Simple Theorems for Establishing 
Bounds on the Total Heat Flow in 
Steady-State Heat-Conduction Problems 
With Convective Boundary Conditions 

Introduction 

L I ins PAPKK presents two theorems which can be used 
to establish limits on the total heat, transfer that can take place 
in certain heat-conduction problems, thereby obviating the need 
for tedious or complicated calculations. The first of these 
theorems has often been used intuitively by practitioners of heat 
transfer engineering; a formal proof is given herein. The second 
theorem, perhaps more useful than the first, is not generally 
known. 

Theorem I. Consider a, solid body composed of material which 
may be both inhomogeneous and anisotropic, but whose proper
ties are independent of temperature. Let the body be isolated 
from its surroundings except for exposure through space-variable 
heat-transfer coefficients to two distinct ambient temperatures. 
If, within some region of this body, the heat conductivity is in
creased (decreased), then the total heat flow from one exposed 
surface to the other will either increase (decrease), or remain the 
same. 

A proof of this quite-obvious principle is given in Appendix A. 
Theorem II. The actual heat flow taking place under the cir

cumstances described in Theorem I will be no greater than that 
calculated when the shapes of the isothermal surfaces within the 
body are arbitrarily assumed, and no less than that calculated 
when the adiabatic surfaces within the body are assumed. 

A proof of Theorem II is given in Appendix B. In a heuristic 
manner, however, we can deduce it directly from Theorem I. 
First note that nearly isothermal surfaces can be created within a 
conductive medium by locally increasing greatly the conduc
tivity within thin layers. According to Theorem I, such changes 
can only tend to increase the total heat flow. Yet, if the layer 
conductivity is increased at a sufficient rate as the layer thick
nesses are diminished (so that the layers degenerate to surfaces), 

Contributed by the Heat Transfer Division for publication (with
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the result of the whole process becomes the specification of the 
shapes of some isothermal surfaces. (It should be observed that 
the temperatures on these isothermal surfaces are not specified, 
but must be found from solution of a reduced heat-transfer 
problem.) Thus the introduction of isotherms into a conductive 
medium tends only to increase the total heat flow. 

An argument similar to that used in the foregoing, but with thin 
layers of poorly conducting material, establishes that the intro
duction of adiabats tends only to decrease the total heat flow. 

Crudely speaking, arbitrarily-selected isotherms constitute 
thermal short-circuits which increase heat flow, and arbitrarily-
selected adiabats obstruct, and therefore reduce, the total heat 
flow. 

I t should be obvious that if the isotherms and adiabats which 
are assumed for the purposes of using Theorem II happen to be 
those which would exist anyway in the actual heat-flow problem, 
an exact result will be obtained. Thus the bounds on accuracy 
provided by Theorem I I can be as close as the intuition and 
mathematical ability of the investigator permit. Generally, the 
difficulty of the attendant calculations will increase as the shape 
specifications are refined. However, a great deal of refinement 
should seldom be necessary for engineering purposes, and, if 
it should be, then direct finite-difference or finite-element calcula
tion with an high-speed electronic digital computer should 
probably be undertaken. 

Kirchoff's principle permits the removal of the restriction on 
temperature dependence for those cases where the surface tem
peratures are prescribed (tantamount to infinite heat-transfer co
efficients), and, no doubt, the theorems are susceptible the gen
eralization in a number of useful ways. In addition, the t heorems 
are applicable in fields where heat-flow analogies are valid (elec
trostatics, incompressible potential fluid flow, etc.). 

The remainder of this paper will be devoted to the presentation 
of several illustrative examples to show how simply the theorems 
can be used to obtain meaningful estimates of heat flow. I t is 
hoped that many other applications will occur to the reader as he 
follows these examples and perceives opportunities to exercise his 
ingenuity. 
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Fig. I Use of Theorem I in bounding the heat flow between square duels 

Heat Flow in the Region Bounded by Two 
Concentric Square Ducts 

Fig. 1 depicts the region bounded by two concentric square 
ducts of sides L, and Lit respectively. The ducts are isothermal 
at temperatures rl\ and T2. The intervening medium has the 
constant conductivity, k. We wish to estimate the total heat 
flow. 

To apply Theorem I to the present problem, we note in Fig. 1(a) 
that the insertion of extremely large conductivity material in the 
shaded regions will only increase the heat transfer. I t will also 
turn the problem into one of heat transfer between two concen
tric circular ducts of radii LrsJ'l and L2, therefore 

Q < 
2TT1C(TI - 1\) 

In e) - I n 2 
2 

(1) 

On the other hand, Fig. 1(6) shows that the actual problem can 
be recovered by short-circuiting in the shaded areas between 
two circular ducts of radii Li and Lis/2, therefore 

Q > 
2wk('l\ - Ti) 

In ( ^ 1 , 
+ - In 2 

(2) 

To apply Theorem II, we first assume that the isotherms have 
the shapes of squares. With reference to Fig. 2, the following in
equality is obtained, thus 

£ f ^-assumed iso-therm 

Fig. 2 Use of Theorem II in bounding the heat flow between square ducts 

Q < 
(f, - T,) 

Ji kA J , I 
~2 dx " 

Sx 

SfcCTi - 2Y 

In 

(3) 

Next we assume the adiabats consist of radial lines emanating 
from the duct center. The differential heat flow under such an 
assumption corresponding to "cW" would be 

dQ 
(?'i - Tj) = _Jl\_zJ'rik 

J, u r W x 
kd\ 

In 

cos 6 

de 

TM8 

L, 

U 

(4) 

Then the actual total heat flow satisfies the inequality 

2rk(T1 - 7',) 
Q > 

* & 

(5) 

Examination of the results discloses that equation (5) always 
yields a higher lower bound than does equation (2), and is there
fore to be preferred. On the other hand, equation (3) yields a 
better (lower) upper bound than equation (1) only for the lower 
range of L-./L,. Interestingly enough, for very large LJU we 
see t h a t the actual heat transfer tends exactly to 

Q 

(i) 
2irk(l\ — T'i) 

-ft: 
(6) 

Space-Variable Heat-Transfer Coefficients 
For a second example, let us analyze a case with space-variable 

heat-transfer coefficients. Fig. 3 shows the sort of variation that 
is experienced on circular cylinders in crossflow. The curve for 
a Reynolds number of 210,000 corresponds to a stainless-steel tube 
of 1.1 in. OD and 0.05 in. wall thickness located transverse to an 
airstream moving at 500 ft/sec at a pressure of 1 atm and a tem
perature of 150 F. To complete the specification of the physical 
situation, let us assume that internally there is air at 5 atm and 
100 F moving at 100 ft/see. 

Theorem II readily provides bounds for the heat flow in this 
instance. Referring to Fig. 4, we assume that the inner and outer 
surfaces of the tube are isothermals, and obtain thereby too high 
an answer, thus 
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2T(TQ - T1) 

1 1 , Ti 1 
+ i n _ + 

«ifi kw n fan 

(7) 

Here hi and hi are the angular average heat-transfer coefficients. 
Neglecting the relatively small change of air thermal conductivity, 
we can rearrange this relation to get 

TrkJTo - Ti) 

1 ka ri 1 
— — -\ In - + ~=— 
(Nu)i 2k, n (Nu)2 

(8) 

Alternatively, assumption of radial adiabats (which puts the 
surface resistances locally in series) leads to the following in
equality, thus 

Q > UT0 - Ti) I f 
Jo 

1 k, 
_ _ + ._ H;) 

(9) 

- + (Nu), 

Calculations based on k„ = 0.017 and A:, = 10 Btu/hr-ft-F and 
(Nu)i = 320 yield the inequality 

191.7 < Q < 194.8 Btu/hr-ft 

for our example. 

Effective Heat Conductivity of a Matrix 
Fig. 5 shows a cross-sectional cut through an inhomogeneous 

solid comprised of a material with conductivity, kh into which 
have been embedded some evenly-spaced square bars with con
ductivity, k2. Let us suppose that what we see represents a small 
segment of a large slab of this composite material, the slab faces 
being at y — ±L. The dimension "L" is presumed to be much 
larger than the wavelengths associated with the inhomogeneities, 
and an effective thermal conductivity is sought for the medium. 
Since the material is anisotropic, we find the value appropriate 
to the jy-direction. 

It is unlikely that the predicted effective thermal conductivity 
can be sensitive to the thermal boundary conditions imposed on 
the slab. However, for definiteness let us assume that the two 
slab surfaces are isotherms. For reasons of symmetry, AD and 
BC are then recognized to be adiabats, and the temperature dif
ference from AB to DO is independent of "x." I t is shown in 
Appendix C that the heat flow is the same as if both AB and DC 

800 

Angle- Svm Forward Stag. Ft, de.%-
Fig, 3 Local Nusselt numbers for air flowing past circular cylinder 
(reference [3]) 

T0 

Fig. 4 Schematic diagram of air flowing across cylinder 

II i II! H I 

Fig. 5 Cross section of composite material 

were isotherms supporting this constant temperature difference, 
and we shall use this fact for the analysis which follows. 

Fig. 6 gives an enlargement of the rectangle ABCD. (Allowance 
has been made for the insertion of bars with rectangular cross 
section.) To obtain an upper limit to the heat flow that can take 
place from AB to CD, assume that lines joining E F and GH are 
isotherms, thus 

Q < 
AT 

hd + 
1 

(9) 

(d - a) a 
ki f - t j : 

b b 

To obtain a lower limit to the heat flow, assume tha t the lines 
joining IL and J K are adiabats, thus 

> h (-
AT 

(c - b) b_ 

kia kid 

(10) 

As a definition of effective thermal conductivity, ke, we take 

Q = k.dAT/c 

I t is then readily found that "k," satisfies the inequality 

(ca/bd) 

( ID 

fcH) + (H.. 
< ke < 

+ k. 

H) 
(12) 

A=i + 
(db/ca) 

ki + k, (H 
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The last expression satisfies all the obvious extreme tests to 
which it can be subjected; e.g., a = 0, b = 0, a = d, b = c, etc. 
For an interesting specific example, let us take c = d = 2a = 26 
and&2 = 4fci. We immediately find 

1.30 £ ke/ki S 1-43 (13) 

To "hedge" our bets, we split the difference and write 

k,/h = 1.365 ± 0.065 

The error cannot exceed 5 percent, and, for engineering purposes, 
further calculation is unnecessary. 

Conclusion 
Two simple theorems have been presented which establish 

bounds on the heat flow which can take place in a wide class of 
heat-conduction problems with surface convection. Illustrative 
examples have been given in which the theorems are applied to a 
rectangular annul us, a cylinder with a widely-variable heat-trans
fer coefficient, and to a matrix medium composed of materials 
with distinctly different thermal conductivities. 

A P P E N D I X A 

Proof of Theorem I 
Fig. 7 illustrates the situation envisioned for the validity of 

Theorem I. We treat- a solid body composed of material which 
may be both inhomogeneous and anisotropic, but whose proper
ties are temperature-independent. The body is isolated (in
sulated) except for exposure to temperature, N, as ambient at Si, 
and temperature zero as ambient at St (no generality is thereby 
lost in this linear problem). 

To commence the proof, form the quantity 

I\ N ff qndS+ ff 9-fdS=N ff 
JJ,S, JJSi + Si "' JJs 

+ ff (T - N)qndS + ff 

= ff TqndS = ff 
JjSi+S* JJs 

qndS 
Si 

TqndS 

TqndS (Al) 

Here we have used the facts that q„ = h(T — Ta) on <Si and So 
and q„ = 0 on all the insulated surfaces. 

Gauss' theorem can be used on the last integral in equation 
(Al). Rearrangement then gives 

NQ = !H<mv - !! q„*dS 
(A2) 

Here "Q" denotes the total heat flow from /Si to ambient, and use 
has been made of the fact that, for steady-state heat conduction 
div(5) = 0. To prevent violation of the Second Law of Thermo
dynamics, heat must now flow "uphill," so that q-VT < 0. 
Then it is seen that Q is necessarily negative, as was to be ex
pected. 

Let us now consider the variations in equation (A2) that can be 
effected by variations internally of the thermal conductivity. 
First note that on the convective surfaces 

8qn = 8{h(T -Ta)} = hdT 

then, from (A2) we get 

(A3) 

N8Q = 

but 

/ ; / 
(Sq-VT)dV 

+ 1 1 1 (q-VST)dV - 2 
/ / / ' ; ; . 

STq„dS (A4) 
S, + St 

J 

£-1 -*• a 

u 

T l P 

! 

Ht 

Fig. 6 Detail enlargement from Fig. 5 for effective-conductivity analysis 

/V= ambient temp. 
fr=tCT-N) 

i h Jul at i oh 

= O 

0= ambient tetnp. 

Fig. 7 Configuration assumed for Theorem I 

I J STq„dS = f f 5TqJS 

therefore 

N8Q III (8q-VT-q-VST)dV (A5) 

If the solid material is isotropic, then 

q = -kVT (A6) 

and 

Sq-VT - q-V8T = -8k (AT)* - kVST• AT + kVT-VST 

or 

N8Q III 8k{VTydV (A7) 
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It. is therefore seen that Q, which is already negative, will become 
more negative with any augmentation of the thermal conductiv
ity within the body. 

If the material is anisotropic, then 

<U = -kn 
dT 

(A8) 

Sq-VT ~ q-V8T = 
dx-i dXj dxi dxj 

dT d8T 
+ k > ' ^ , ^ ( A 9 ) 

As a consequence of Onsager's principle, it is generally considered 
that the conductivity tensor of an anisotropic medium can be 
treated as symmetric (2).1 Then kij = kji, and equation (A5) 

NdQ = -
JJJ 'J dXi dXj 

dV (AlO) 

At this point, in the case of an anisotropic medium, it is neces
sary to be more specific in what is meant by the words "increase 
the heat conductivity." Since the conductivity tensor is sym
metric, there exists at each point within the body a principal 
axis system with direction unit vectors a', eV, and e3' such that 
the tensor referred to this system is diagonalized, with principal 
values Ki, K-,, and K:>. The heat conductivity is said to be in
creased if any of these principal conductivities is increased without 
alteration of the principal directions. Transformation of the 
tensor from the primed to the unprimed system gives 

kij = ~^2 K" c o s (x»'> x») c o s (x»'> x>) (Al l ) 
n = i 

The excursions in equation (AlO) are to be taken without al
teration of the foregoing direction cosines. Hence, with the aid 
of equation (All ) , we get 

NSQ 

but, 

;;;.?. 8Kn COS {Xn , Xi) 
OXi 

dT 
X cos (xn1, XJ) r—dV (A12) 

OXj 

dT dT 
cos ix,,', Xi) — = , etc. 

dxt dxn 

NSQ = / / / .? ."• 
dT 

dxn' 
'V (A13) 

If, for each "n," SK„ =i 0; i.e., if the "thermal conductivity is in
creased," then it is seen that Q is made more negative. Hence 
Theorem I is proved. 

A P P E N D I X B 

Proof of Theorem II 
To demonstrate the first part of Theorem II concerning iso

therms, hypothesize that a single infinity of isothermal surfaces 
<p(f) = /3 has been named within the body of Fig. 7 (see Fig. 8), 
and that the temperature solution, T'(fi) has been found by ele
mentary heat balances. For example, let us perform such a heat 
balance on the elementary shaded volume element lying between 
"13" and "p + d/3" in Fig. 8. Let S1 denote the internal surface 
reduces to 

of this element, and SE denote the surface it shares externally 
with the entire body. A heat balance gives 

J J S J J SE 
h(Ta - T')dS (Bl) 

Now, extending the conductive flux integral to include the bound
ing surface, SE, as well, and using the expression for an anisotropic 
medium, we get 

IL 
dT' 

-ka dSi 
dxj J J S* 

dT' 
-kij — dSi 

dxj 

JX d7" 
H'Pa - T') - kn nt} dS (B2) 

SB \ dxj 

Or: 

/ / / 

d 
— ki 
dxi dxj IL h('l" Ta) + ki. 

dT' 

dxj 
dS 

(B3 

We have here energy conservation for a nearly isothermal layer 
of prescribed shape. If the isotherms were not prescribed, the 
conservation principle would be applicable to volume elements 
two infinities smaller (i.e., of differential extent in all directions). 
Then, of course, the integrand on the left-hand side of equation 
(B3) would be zero, yielding the usual differential equation for 
heat conduction. And the right-hand side could also be proved 
zero at each local point on the surface, yielding the usual convec-
tive boundary condition. These reductions are not available for 
the fictitious temperature distribution, T". 

I t is clear that equation (B3) can be reduced in the limit, as 
d/3 —*• 0, to a surface integral on the left, and a line integral on the 
right. We shall not bother to do so, but observe, rather, that 
each side is presently of 0(57"). Hence if some function of T' is 
introduced inside the integrals of equation (B3), the variation of 
this function being of (057"), the error is only 0(57")2, and the 
modified equation is equally valid, thus 

III^<"-IL- h(T' - Ta) 

dT' 
+ kn m \ dS (B4) 

dxj 

Since this equation applies to each isothermal layer of the solid, 
it also applies globally, based on the presumption that <f>(f) is 
unique. Rearrangement of equation (B4), and the use of Gauss' 
theorem yields 

A/= ambient ternf>. 

^•S'lfahCr^) 

0= am bent t*rr>f>. 
1 Numbers in brackets designate References at end of paper. Fig. 8 Heat balance with arbitrary isotherms, T'(/3) 
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ff T'h(T' - T*)dS = ff T'qn'dS 

CCC i> <>T' CC d'i" 

'fffr^-^v-))Tk^\A8 
CCC o r ' DT 

JJJ '" dXi dXj 
dV (B5) 

To compare the heat flow with prescribed isotherms and dis
tribution T' with the heat flow obtained with the exact distribu
tion T, form the quantity (see Fig. 8) 

J^BN ff q„'dS + | | - - dS + N I I q„ (IS 

JJSl JJ.^ + s, n JJ«, 

JjS, + S- h J J Hi JJs, + S 

<M« dS 

(B6) 

With q„' = h(T' — Ta) and </„ = h(T — Ta), and with h = 0 
on all surfaces except Si and 182, we obtain 

J = ff T'«,d8 + ff ****'- * ff T'« undS (B7) 

Use Gauss' theorem, equation (Bo), and the fact that div(7/) = 0 
to reduce the above expression to 

J = 
; ; / ' - dXi 

(2" T) • - <7" - T)dV (B81 
dx,j 

"kii" is a positive symmetric matrix, so that the integrand in 
equation (B8) is everywhere greater than or equal to zero (see 
the argument for equations (Al 1-13)). 

On the other hand, it is readily seen from equation (B6) that 

/ = N{Q' - Q) + 

Equate the two equations for "J" to obtain finally 

A'«3' - Q) = 

('In' - S») 

- ( ? " ' - - - - ^ d S (BO) 
h IL, 

"J" to ob 

II Si + S*. 
h 

dS (BIO) 

Now it was shown in Appendix A that Q is necessarily negative. 
According to equation (BIO), then, "Q'" is even more nega
tive. In other words, the heat flow has been increased by speci
fication of the isotherms. 

To prove the second part of Theorem II, namely, that the 
specification of adiabats can only tend to decrease total heat flow, 
consider the formulation when an interior surface, Sl, divides the 
solid of Fig. 7 into two parts, A and B. For the purposes of ob
taining a good lower bound for heat transfer, this interior surface 
should stretch from Si to St. However, it need not. In fact, we 
do not even presume at the moment that Sl is adiabatic. 

The expression for "I," as in equation (At), reduces to 

TAqn
AdS '~IIT"-',S = II/V-,S + IL 

~ ff TAq,AdS + ff TVdS + ff T% 

- IL TV 
BdS 

tl
BdS (B l l ) 

Here regions A and B have both been shown sharing the external 
surface, S, although such supposition plays no role in the proof. 
Gauss' theorem, and the fact that q„ls = — </„-', immediately re
duce equation ( B l l ) to 

/ fff 7rVTdV - ff q,A(TA - T>-
JJJA + B J J ,s' 

)dS (B12) 

At this point, we specify which portions of S' are to become 
adiabatic, and we do so by designating uniformly thereon a con
tact coefficient, "/;*." Then qn

A = h*(TA - Tu). Elsewhere 
on S1, where temperature continuity is to be maintained, the sur
face integral can be ignored. Hereafter, S' shall denote only the 
"active" parts of the original internal surface, thus 

I = 

Or: 

NQ = 

III q-VTdY - h i/> TA _ TBy.dS ( B 1 3 ) 

JJJA+B JJsi + .ii ,l 

- h* ft (TA ~ T»ydS (B14) 

Variations in Q are now considered as they are produced solely 
by variations of h*. The analysis here is so parallel to that in 
Appendix A that it will not be reproduced here. The result is 

. dQ 

dh* II,<Tl - T">" IS (B15) 

Now from equation (B14) it can be argued that Q is always nega
tive, and from equation (Bio) if is seen that a decrease in h* tends 
to increase Q; i.e., reduce its absolute value. Moreover, if it be 
granted that (TA — TH)1 < A"2, then the derivative ilQ/dh* 
exists for all values of h*, ranging from 0 (adiabatic) to co (zero 
interfacial resistance, and consequently zero temperature discon
tinuity). It is seen then that the introduction of an arbitrary 
adiabatic surface within the solid can only tend to reduce the 
absolute value of the total heat flow. 

By induction we can infer (he result for the introduction of 
further adiabatic surfaces, since, after the addition of each such 
surface, new problems in solid heat transfer are generated which 
belong to the original class; namely, consisting of solids exposed 
al one surface to ambient temperature, A", and at another surface 
to temperature, 0, with all other surfaces adiabatic. Hence each 
successive introduction of an adiabatic surface tends to diminish 
the magnitude of the total heat flow. 

A P P E N D I X C 

Temperature Specifications for Inhomogeneous Solid 
With reference to Fig. .">, we suppose that the material has in

finite extent in the ^-direction, and that planes at 1/ = ± L are 
specified as isotherms. In such circumstances, Al) and BC lie on 
planes of symmetr.y. Furthermore, if "L" is much greater than 
either of the transverse edge dimensions of the imbedded bars 
(i.e., L » a or b), then the temperature drop per layer of 
bars must become uniform within the interior. Thus if T = Ti>-\-
f(x) along DC, the temperature along AB must be T = TD + f(x) 
+ 5. As noted, AD and BO are adiabats. 

With the foregoing boundary conditions on temperature, the 
heat flow problem in ABC1) can, by reason of linearity, be 
broken into three parts: (a) a problem for which T = I'D uni
formly on AB and DC; (b) a problem for which T = S uniformly 
on AB and zero uniformly on CI) ; (c) a problem for which T = 
/(.r) on both AB and DC. 

By reasons of symmetry, the net heat flow in the //-direction 
for problems (a) and (c) in the foregoing is zero. Thus the calcu
lation of the net heat flow in the (/-direction from problem (b) 
alone is justified. 
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Peak Pool Boiling Heat Flux in 
Viscous Liquids1 

The stability of a gas jet in a surrounding viscous liquid is studied. An expression is devel
oped for the critical velocity at which the jet becomes unstable in a returning viscous 
liquid. The stability analysis is made to correspond with the geometrical configuration of 
gas jets and liquid columns similar to those observed near the peak pool boiling heat flux. 
The critical velocity of the gas jet is then used to obtain the fur ctional form of the peak 
heat flux on flat plates and cylindrical heaters. The expressions are compared with original 
observations of the peak heat flux in very viscous liquids on flat plate, and cylindrical, 
heaters at both earth-normal, and elevated, gravities. 

I n t r o d u c t i o n 

Most prior studies of the peak pool boiling heat flux, qmax, 
have ignored the liquid viscosity. Kutateladze's [1J2 and Zuber's 
[2] expressions for the peak flux on infinite heaters were for invis
cid liquids. They predicted that the peak would occur when the 
jets in an escaping vapor configuration (as shown in Fig. 1) be
came Helmholtz unstable. Zuber's expression for the peak heat 
flux was substantially the same as Kutateladze's, namely 

<7n = 2^P s .
1 /2 , ' / ski,>(P/ - P , ) 1 (1) 

Borishanski [3] subsequently suggested dimensionless groups to 
characterize the boiling problem. One of these was the Borishan
ski number, (pfo/nr-

2) \lT/g(pf - pg). Including its contribution in 
equation (1), he was able to make a small correction for the influ
ence of viscosity in existing data. 

However, a difficulty arises in interpreting the influence of vis
cosity—it can affect e/max in two very different ways: 1 In 1970, 
Lienhard and Keeling [4] correlated 9max data for long ribbons 
which admitted a sidewise inflow of liquid. This inflow led (as 
Costello, et al. [5] noticed in 1965) to large variations of Qmax. In 
[4] these variations were correlated with the help of a modified 
Borishanski number. 2 The other viscosity influence is one which 
operates internally in the hydrodynamic process. When the liquid 
is very viscous the wave collapse mechanisms that cause transi
tion, change and with them qmax, are affected. This even occurs on 
a flat plate with vertical side walls to prevent any induced con-
vective flow, if the viscosity is large enough. 

J This work was supported by NASA Grant NGR-18-001-035, 
under the cognizance of the Lewis Research Center. 

2 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division for publication in 

the Journal of Heat Transfer. Manuscript received by the Heat 
Transfer Division, April 24, 1973. Paper No. 74-HT-J. 

Our present interest is in the latter internal viscous influence. 
We shall consider two configurations: the flat plate and the hori
zontal cylinder, neither of which induces a side flow into the ris
ing vapor jets. Cylinders were considered by Bobrovich, et al. [6] 
and by Lienhard, et al. [7,8] who showed that g m a x in inviscid liq
uids could be correlated by expressions of the type: 

-.f(R') whe re R' = Ryrg(pJzrpJ7cT (2) 

Sun [9] subsequently formulated a hydrodynamic theory which 
showed what form equation (2) should take. He found that for 
cylinders, so small that the vapor jet diameter is less than half 
the Taylor unstable wavelength, X<i, the vapor jets will be as 
shown in Fig. 1. He took the Helmholtz unstable disturbance in 
the jets to be the Rayleigh wavelength, 2w(R + &), regardless of 
Ad, and the Helmholtz wavelength to equal Ad. He obtained: 

'/max' '/n = 0.89 + 2.27 e x p ( - 3 . 4 4 v 7 r ; (3) 

Equation (3) was obtained by using an experimental expression 
for the thickness of the vapor blanket, 5, surrounding a cylindri
cal heater. We [10] subsequently showed how to get the following 
simplified expressions (which differ only slightly from equation 
(3)) for qmax on cylinders: 

</„ 
</n 

0.94/V.R' R' < 1.17 
0.904, R' > 1.17 

(4) 

In [10] we also showed that equation (1) is low since Zuber used 
the Rayleigh wavelength for the Helmholtz unstable wavelength, 
instead of Ad. This change yielded a more accurate result for the 
peak heat flux on a flat plate, g(maxF), in an inviscid liquid: 

<7n 1.14f/n (5) 
i nvtsetd 

The present work will obtain the functional form of an expres-
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- 2 ( R + 8) 
2 ( R + S 

</n (6) 

Fig. 1 Vapor removal conf igurat ion on an "infinite" flat plate and cylin
drical heaters 

sion for the peak heat flux in these geometries when the fluid 
viscosities are taken into account. This will be done by first de
termining what form the critical velocity of gas jets in viscous liq
uids takes, and then combining this function with the energy 
equation. Finally, we will compare these predictions with data for 
flat plates and cylindrical heaters operating under both earth-
normal and elevated gravities. 

A n a l y s i s 

The peak heat, flux on a heater can be written quite easily by 
making an energy balance at the surface of the heater: 

where Aj is the total area of the jets on an area An of the heater. 
11 H is the maximum, or critical, velocity at which the gas jets be
come unstable and obstruct the flow of liquid to the heater sur
face. 

In the viscous analysis we assume that AJ/AH is the same as in 
the inviscid case; hence it is the same as given in [10]. This in
volves the supposition that the same vapor-escape modeis hold 
good as far as jet size, location and orientation are concerned. 
Thus our aim will be to find the velocity at which the jets become 
unstable in a viscous liquid. 

Infinite Horizontal Flat Plate . The vapor jets are assumed to 
be located at the points where a two-dimensional grid of Taylor-
unstable waves collapses. It was recently shown by Sernas, et al. 
[11] that a three-dimensional wave analysis gives jets at the same 
locations on the grid as Zuber assumed in his two- dimensional 
analysis. The wavelength, \d, has been shown [12) to be in
fluenced by liquid viscosity, and its dependence on liquid viscosi
ty is known from that analysis. 

The assumed configuration of the vapor jet, along with the liq
uid-vapor velocity profiles, is shown in Fig. 2. The figure contrasts 
the vapor removal idealization for the inviscid case with that 
which we assume for the viscous case. In the viscous case we can
not treat a circular jet in a square area if the analysis is to be at 
all tractable. Thus we inscribe a circular liquid return path inside 
the square area. We also assume: 

1 The vapor and liquid velocities, Ug and Uf, = 0 on the in
terface. Actually the interface velocity might be positive or nega
tive, but it will be small. 

2 The Poiseuille velocity profile is valid in the vapor jet. 
3 The analysis is two-dimensional. The pressure resulting 

from curvature of the jet will be added later and velocities will be 
adjusted such that: 

4 The mass inflow of liquid in the circular annulus is matched 
by the gas outflow in the circular jet. Uf must be locally maxi
mum or minimum at y = 2Rj to satisfy the symmetry condition: 
(dU/dy) = 0aty = 2Rj. 

5 The shear stresses are matched at the interface. 
The resulting velocity profiles are obtained by fitting even 

polynomial functions in y/Rj to these conditions. For the gas we 
obtain 

N o m e n c l a t u r e -

F 

Ah = area of flat plate, or cylin
drical, heater 

Aj = combined cross-sectional 
area of vapor jets escap
ing from an area, Ah, of 
the heater 

c = speed of a travelling dis
turbance in a liquid-
vapor interface 

perturbation amplitude 
function, see equation 
(A2) 

actual gravity or body force 
acting on the heater, sub
script, e, denotes earth-
normal gravity-

latent heat of vaporization 
wave number, 2ir/wave

length 
M = a dimensionless group char

acterizing the influence 
of liquid viscosity, 

k 

Pt® \Pf ~~ Ps> 

P, P = dimensionless perturbation 
pressure as defined in 
equation (A14): overbar 
denotes the absolute 
pressure on the heater 
surface 

p, Pf = dimensionless perturbation 
pressure, in the gas and 
liquid phase, respective
ly, (physical pressures 
d'ividedbyPsU(/m)2) 

(/max, q(maxf) = peak flux for a particular 
heater geometry and for 
an "infinite" flat plate, 
respectively 

q(maxz) = Zuber's prediction of the 
peak heat flux on an in
finite flat plate, defined 
in equation (1) (used as a 
dimensionless group in 
the present study) 

R = radius of a cylindrical 
heater 

R' dimensionless radius of a 
cylindrical heater, 
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Rv/>(/>, - pe)/o 
Ee = Reynold's number, U(fm)-

RjPg/pu 
Rj = radius of an escaping vapor 

jet 
S — a dimensionless number 

(product of reciprocal 
Weber number and 
Reynolds number) as 
defined in equation 
(A14) 

T = dimensionless perturbation 
tangential stress as de
fined in equation (A14) 

t = dimensionless time (physi
cal time divided by 

Mj/U(f,n)) 

(Continued on next page) 
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where the subscript m denotes the maximum value; and for the 
liquid 

(8) 

These results incorporate considerable physical approximation 
and, indeed, when we complete the analysis we shall find it nec
essary to adjust one constant before the theory will fit the experi
mental results. However, the actual physical configuration is so 
complicated that we could hope for no more. What the present 
analysis will yield is the proper form of the dependence of the 
peak heat flux on the relevent dimensionless groups. In the light 
of this objective our failure to represent the configuration more 
precisely is of no great importance. 

Equation (8) gives a maximum downward velocity of: 

•l!e (0.3557 < < - , 0.0388 (9) 

which occurs at y = 1.28 R,. It is worth noting that this maxi
mum occurs near the interface and that there is a slight upward 
recirculation of liquid at y = 2Rj. We should also be aware that 
the constants in equation (9) fully reflect any crudity in our as
sumptions as the liquid and vapor flow configurations. 

Formulation of the Stability Problem. To study the stability 
of the interface we superpose perturbation components of velocity 
and pressure on the mean flow of gas. 

We nondimensionalize velocity, distance, pressure, and time 
with U(fm), Rj, pdHfm)2, and Rj/U(fm). respectively. We then 
define, u, v, and p as the dimensionless perturbation components 
of axial velocity, radial velocity, and pressure. The subscripts t, 
x, and v designate differentiation with respect, to the dimension
less independent variables. 

The continuity and Navier-Stokes equations for the perturbed 
flow on the gas side are then: 

777^777?7//A///'X'//////, ' 

- - --_ : 
— x-t-x-7*— 

- -- — 

\ 
R, * — 

I 4 

- 2 Ri 

inviscid configuration viscous configuration 

Fig. 2 Assumed theoretical models of boiling near the peak heat flux 

II, ! I\.-- 0 (10) 

nt + Unx -i l'rr z= px -< R e - ' K , + n.J (11) 

rt 4 !'i\. = - / ) v - t R e " ' ( c „ < ' ' „ , ) (12) 

where Re = U(fm)Rj pg/pg- The boundary conditions are: 

r =- 0 at v .--- 0 (13) 

ii y --• 0 at v = 0 (14) 

p - 2Re""V y + an^/ip.UfjRj) -t- mi/(2pel!fjRj) 

= pf , at v = 1 (15) 
com pi ex 

,. _ He ' at v = 1 (16) 

where ?j is the displacement of the interface between the gas jet 
and the liquid column from its mean position, pifcompiex) and 

N o m e n c l a t u r e 

(/ = unperturbed value of di
mensionless velocity, 
used only in Appendix 
(of., u) 

Ur, U(fm) = velocity of liquid in the 
liquid column; subscript, 
m, denotes maximum 
downward liquid velocity 

{/«;, Uigm) = velocity of gas in the gas 
jet; subscript, m, denotes 
maximum upward gas 
velocity 

UH = gas velocity which causes a 
jet to become Helmholtz 
unstable 

u = dimensionless perturbation 
gas velocity in the x di
rection (physical velocity 
divided by {/(/„,)) 

V = a dimensionless group 
characterizing the in
fluence of gas viscosity, 

V pejll o^ 
„.,t3 4 

4 /W'"*(P/ 

v = dimensionless perturbation 
gas velocity in the y di
rection (physical velocity 
divided by U(fm)) 

x, y = dimensionless position co
ordinates perpendicular 
to, and parallel with, the 
heater surface (physical 
coordinates divided by 
Rj) 

a, 0 = dimensionless wave num
ber, kR,; fi^kRj - 1, a 
perturbation quantity 

5 = thickness of the vapor blan
ket on a cylindrical heat
er near qmax 

7j, rio = ordinate of interface in y 
direction from its mean 
position; subscript, o, 
denotes value of r\ at 
some reference t and x 

A, Ad = dimensionless wavelength, 
(X/2w) vgipT^^pTl?^ 
subscript denotes "most 
susceptible" Taylor 
wavelength on a flat 
plate 

A, X,i = wavelength; subscript de
notes "most susceptible" 
Taylor wavelength 

Pf, Pf, = viscosity of liquid and va
por, respectively 

pf, pa = density of saturated liquid 
and vapor, respectively 

a = surface tension between a 
liquid and its vapor 

Tr = dimensionless perturbation 
shear stress in liquid, 
(physical shear stress di
vided by pgU(f m I I 

4- = perturbation stream func
tion as defined in equa
tion (A2) 

Subscripts 

denote saturated liquid and 
vapor properties 

denotes imaginary compo
nent of a complex num
ber 

denotes real component of 
a complex number 
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r(fcompiex) are the complex perturbation pressure and shear 
stress, respectively, from the liquid side. 

Equations (10) through (12), with boundary conditions (13) 
through (16), have been solved for small Re and for dimensionless 
wave numbers of the disturbance near unity. Complete details of 
the analysis are given in the Appendix. For a neutral disturbance 
with a wavelength equal to the "most susceptible" Taylor wave
length in the interface of the gas jet and the liquid column,3 it is 
shown in the Appendix that: 

2-irRi i] 
Pi = 

V 2RiPs V, 
(17) 

where 77 represents the magnitude of the imaginary component of 
the complex fluctuating shear stress and p/ represents the real 
components of the complex fluctuating normal stress that results 
from the downward flow of the liquid-

The evaluations of T//T? and p//)j are extremely difficult. They 
involve solving the equations of motion with appropriate bounda
ry conditions. Brooke Benjamin [13] has solved the comparable 
problem for a boundary layer type of exterior flow on a wavy wall, 
with no pressure gradient. For the shear stress and pressure per
turbations, he obtained: 

Pi. 
n 

^ = - 1 . 1 8 8 ( - ^ 

2n 
R 

) (^) 9M 
p/ lpf(Uf) R, * L « 

(18) 

(19) 

We shall use these expressions in equation (17) with the reali
zation that they represent the incorrect configuration. The liquid 
velocity profile in our case is flatter and it has a negative pressure 
gradient in the direction of flow. However, if we did obtain equa
tions equivalent to (18) and (19) for our situation, they would dif
fer only in the lead constant on the right-hand side. Substituting 
equations (18) and (19) in equation (17) and rearranging the re
sult, we obtain: 

TRjPf 
(20) 

To get the desired expression for the maximum stable vapor 
velocity in the jet we combine equations (20) and (9) and replace 
Rj with A<j/4. The result is 

Pf 

Pi IL 2(0.3557 -^- + 0 . 0 3 8 9 - ^ l [ l - 2 
pf 

( Mr 
Pf Ms f;

fr 

i / 3 

> 

4a 

" > d p / 
(21) 

The form of equation (21) is correct within the limitations of the 
three constants 0.3557, 0.0388, and 2.05, which reflect the approx
imations that have been introduced in the various configurational 
assumptions. 

Peak Heat Flux Prediction for Flat Plate Heaters. The aver
age vapor velocity for Poiseuille flow in a cylindrical jet at the 
point of instability is U(gm)/2. Using U(gm)/2 for UH in equation 
(5) and AJ/AH = TT/16 we obtain: 

<ln 32 P<,!fiu* (22) 

Substituting equation (21) for U(gm) with pg/pf <c 1, and dividing 
by q(maxF) = 1.14 <?(maxz) we obtain the desired expression for 
the dimensionless viscous peak heat flux on a flat plate (this as
sumes that 0.0389 pg/pf « 0.356 Mg/V or that vg/vf » 0.11) 

3 The actual value of \<i depends on viscosity as described in 
reference [12]. The values of Xd used here were obtained from 
[12]. 

/ l -

0.63 1 U \ , 
r f f (23) 

0.81 
I 

3/zA„ 
„ i n w s c i d . 

<ln 

Our approximations as to the flow configuration are now reflected 
entirely in the two constants: 0.63 and 0.81. 

In the expression (23) M and V are the liquid and gas viscosity 
parameters, respectively. Ad is the dimensionless "most danger
ous" wavelength. The dependence of Ad for infinite plates (R' ~» 
°°) is known from the analysis given in reference [12]. The dimen
sionless groups are defined as 

M 
PfO 

P-fli ''(/-»/ - P f ) " 

UiW£± 
net;

1!H[>,-p<r 

Ad 
^RLZ-£A 

(24) 

(25) 

(26) 
2u\ 3 ' a 

Peak Heat Flux on Small Horizontal Cylinders. In this case 
we assume the same model for the size of the gas jets, their loca
tion, and the dominant wavelength, at the gas-liquid interface as 
was assumed by Sun and Lienhard [9] for inviscid liquids. Thus, 
if R is the radius of the heater and 6 is the thickness of the vapor 
blanket, the gas jet radius is taken to be (R + 5). The spacing of 
the jets is Xa, the most rapidly growing Taylor unstable wave
length. The Helmholtz unstable disturbance in the gas jet is now 
the Rayleigh wavelength, 2w(R + 3), instead of Ad. Thus we re
place Rj and Ad, in equations (17), (18), and (19), with (R + a) 
and 2w{R + 5), respectively. Then, using equation (9), we obtain 
for the maximum stable gas velocity: 

UK
 2[0.3 557 0 ,0389 -^ 

Pf 
.41( 

pf lil: Ug (R + 5) ) ] 

(27) 
77(R - 5)pi 

The energy balance at the surface of the heater, equation (6) 
gives 

l'e» TiUt -•- 5 ) 2 

' /max = Pe'lfe ~H JTTrT^ ( 2 8 ) 2 2 77 7? A,, 

Substituting equation (27) for U(gm) in equation (28), and divid
ing by the form of equation (4) which applies to small R', we ob
tain 

/ max 

('/«,) 
0.2967?' 

/ 1 - 0 . 8 6 9 | 
V 

,l/aA 

6/7?) 

' /ma z 

'MA i (29) 

The vapor blanket thickness around a cylindrical heater near 
the peak heat flux has been correlated by Sun and Lienhard [9] 
from the experimental data for inviscid liquids. We do not antici
pate any serious change in the vapor blanket thickness with vis
cosity and therefore use their results. Their correlation for the 
vapor blanket thickness for small cylinders is: 

5 
R ' ~R' 

1 (30) 

Making use of equation (30) in (29), we obtain for the dimension
less peak heat flux: 

<7t! 

w max' 

/ I - I . O S I T ^ 

0.79 r/.i/A,, 

07 
(31) 

max' 1 /^ 

A ' % W ( K ' ) ' ' 1 

It is interesting to note at this point that Borishanski [3] sug-
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Table 1 Peak heat llux data for cyclohexanol on circular flat plate heaters 

g H. 

1 

> ' 
4 .97 
8 .95 

P (A'Pa)<"> 

1 .61 
3 .62 
5 .66 

11.73 
22 .52 
99 .50 
11.86 

7 .31 

M 

20 
35 
48 

100 
155 
250 

70 
38 

V 

260 
337 
380 
490 
600 
920 
437 
350 

g,„a„„ X 1 0 -
(W/m2) 

1.67 
1.99 
2 .10 
2 .55 
2 .81 
5 .65 
3 .75 
3 .53 

U ncorrec 
observat 

2 .19 
1.75 
1.54 
1.34 
1.25 
1 .02 
1.48 
1.48 

<?„,»> 

ted 
ion 

„/(f?m„„,)i„vi«e> 

Correction 
factor [14 ] 

1.36 
1.43 
1.47 
1.0 
1.0 
1.0 
1.0 
1.0 

i 

Corrected 

2 .98 
2 .51 
2 .26 
1.36 
1.25 
1.02 
1.48 
1.48 

'O The S.I. unit of pressure, the kPa, is equal to 0.01 bar. 

gested that a variety of up to eight dimensionless groups might be 
involved in the viscous peak heat flux problem. These included 
groups which could be combined to give both M and V. However, 
he suggested that a group equivalent to M, alone, would be suffi
cient to characterize the viscous effects. 

Peak Heat Flux on Larger Horizontal Cylinders. Reference 
[9] shows clearly that the transition from small to large cylinder 
behavior is not a sharp one. While the break between our equa
tions (4) occurs at R' = 1.17, Sun showed that the transition re
gime extended as far as R' ^ 3.5. We therefore expect to be able 
to use equation (31) (which depends far more weakly on R' than 
equation (4) does) up to values of R' considerably beyond 1.17. 

For large values of R', it is difficult to formulate models of vis
cous behavior because serious scaling problems are introduced. 
Turbulence can enter the problem and other kinds of transitions 
can occur. No model should be advanced unless it is supported by 
a great deal of good visual, as well as r/max, data for R' > 4 in 
very viscous fluids. Such observations are beyond our present 
capabilities. 

Exper iments 
The peak heat flux was observed on a flat plate and on hori

zontal cylinders at both earth-normal gravity and at elevated 
gravities. The boiled liquid was cyclohexanol, CH2(CH2)4CHOH, 
which is very viscous when it is boiled at low saturation pressures 
near room temperature. The relevant physical properties of cyclo
hexanol are listed in reference [14]. 

The Flat Plate Heater Experiments. A 6.35-cm-dia copper 
cylinder was used as a test heater. Complete details of the experi
ments are given in [14] and we only summarize a few essential 
features of the apparatus and procedure here. 

The straight run of cylinder extends downward for about 4 cm 
and the heater flares to a diameter of 10 cm in th" next 4 cm. 
Coils of nichrome resistance heating wire are mounted on the bot
tom of the flared copper block. The surface heat flux was ob
tained by measuring the temperature gradient with the help of 
thermocouples embedded in the straight-cylindrical section, im
mediately below the surface. 

A pyrex jar of the same diameter as the heater surface, and al
lowing a liquid head of about 6 cm, sits on the heater surface. 
Other components of the heater assembly were a heater support, 
an automatic power shut-off mechanism to avoid runaway tem
peratures at the peak heat flux and a reflux condenser. 

Before each test, the boiling surface was polished with 220 grit-
size emery paper and then cleaned with soap and water and fi
nally rinsed with the test liquid. The resistance heating wire was 
energized and the current was gradually increased in steps. The 
transition from nucleate to tranitional boiling was identified by 
noting a slowdown of the boiling process and a sudden continuous 
increase in the reading of a thermocouple mounted near the heat
ing surface. The thermocouple reading continued to increase for a 
while, even after power was removed. The peak heat flux data 
from these tests are listed in Table 1. 

Cylindrical Heaters . The peak heat flux on horizontal cylin
ders was observed in the same apparatus as used by Sun and 

Lienhard [9]. Nichrome wires approximately 10 cm long were 
cleaned with soap and hot water to remove any grease or oily 
matter and were then rinsed with the test liquid. The surface of 
the heaters were smooth and had a cold rolled finish (as supplied 
by the manufacturer). The wires were then mounted in a test 
capsule which was then filled with the test liquid to a level of 
about 2.5 cm above the wire. 

A vacuum pump was used to maintain the desired pressure in 
the capsule. The current in the wire was steadily increased until 
(Jmax was reached and the transition from nucleate to film boiling 
was observed. Similar observations were made at higher gravities 
in the centrifuge facility of the Boiling and Phase Change Labora
tory. Details of the centrifuge, capable of running at 100 times 
earth-normal gravity, are also given in reference [9]. The peak 
heat flux data for cylinders are tabulated in Table 2. 

Discussion of Results. For a particular fluid at earth-normal 
gravity, there is a unique value of V for every value of M. Thus 
equation (23) takes the form <j(rnaXF)/(<j(maxF))inviscid = f(M) 
and equation (31) reduces to <jmax/(<jmax)inviscid = f(M,R'). In 
Fig. 3 we plot the data for flat plates and cylindrical heaters at 
earth-normal gravity. The flat plate data for M less than 100 
have been corrected for the effect of finite flat plate size. Since 
fewer than three wavelengths are accommodated on the plate, 
after the wavelength is corrected for viscosity, there can be a 
slight variation of <jmax with Ah as jets are added and subtracted 
from the surface. This effect of finite flat plate size has been dis
cussed in detail in reference [14]. The present data have accord
ingly been nondimensionalized by dividing them by the corre
sponding inviscid values for finite plates. 

Fig. 3 also includes equations (23) and (31) for comparison. 
However, as we noted in deriving these expressions, the two deci
mal fractions in them (one in the numerator and the other in the 
denominator) should be regarded as free constants which might 
have to be altered empirically. The constants in the denominator 
are relatively less influential; thus we shall not tamper with 
them. On the basis of the data in Fig. 3, however, we shall divide 
the values 0.63 and 0.79 in the numerator by 3 and obtain 0.21 
and 0.26 in equations (23) and (31), respectively. In Fig. 3 we plot 
equation (31) for R' = 0.15 and R' = 2.5, in the range in which 
our small-cylinder hydrodynamic model is applicable. With the 
adjustment in the constant in the numerator, the comparison be
tween theory and experiment is very good indeed. 

When we go to variable gravity experiments in cyclohexanol, V 
and M are no longer constant, but vary with g. Accordingly <?max/ 
(<?max)invis( id becomes a function of two variables, M and V. 
Equation (31), with the lead constant equal to 0.27, has been 
plotted as a three-dimensional surface in Fig. 4. Fifteen high-
gravity data for horizontal cylinders (Table 2) are included in the 
figure. The dependence on R' is not shown in Fig. 4 as *VR', for 
the present data, is close enough to unity that it is uninfluential 
in equation (31). 

We see that these data faithfully bear out the independent in
fluence of the parameter, V, as it is predicted by equation (31). 

It is important to note that as M increases or as V decreases, 
the prediction of <jmax/(<?max)invisrid eventually falls below unity. 
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Table 2 Peak heat (lux data tor cyclohexanol on horizontal cylindrical heaters 

R (mm) 

0.4128 
0.5144 
0.6540 
0.8001 
0.5144 

i 
0.6540 
i 

\ 
0.4128 

j 

1 
1 

i 

R' 

0.216 
0.268 
0.343 
0.419 
0.284 
0.289 
0 .294 
0.354 
0.362 
0.368 
0.373 
0.222 
0.228 
0.233 
0.241 
0.669 
0.997 
1.194 
0.680 
1.020 
1.220 
0.672 
0.998 
1 .207 
0.687 
1.011 
1 .220 
0.702 
1 .032 
1.240 

slg> 

1 
I 
i 

x ' 
8.5 
18.3 
25.7 
8.3 
18.3 
25.7 
8.3 
17.8 
25.7 
8.3 
17.8 
25.7 
8.3 
17.8 
25.7 

P (kPa) 

0.30 
0.30 
0.30 
0.30 
2.68 
5.00 
7.72 
1.06 
2.41 
5.47 
7.17 
0.94 
2.76 
7.86 
13.31 
3.54 
5.34 
6.89 
8.00 
10.41 
11.99 
5.45 
8.00 
9.44 
10.40 
11.58 
12.82 
16.52 
17.99 
19.23 

M 

5.4 
5.4 
5.4 
5.4 
29 
44 
66 
16 
27 
47 
61 
14 
30 
67 
104 
20 
23 
26 
37 
37 
36 
28 
30 
32 
44 
39 
39 
63 
55 
53 

V 

125 
125 
125 
125 
312 
366 
425 
233 
300 
375 
420 
215 
317 
429 
500 
196 
181 
182 
247 
218 
209 
224 
205 
193 
262 
221 
209 
295 
251 
239 

?»,», X 10-* 

3.60 
2.72 
2.74 
3.31 
4.60 
4.89 
4.79 
3.18 
3.59 
4.00 
4.26 
3.25 
3.37 
3.69 
4.29 
5.27 
6.24 
8.67 
5.48 
7.16 
8.10 
5.71 
7.00 
7.95 
5.80 
6.69 
8.10 
5.48 
7.44 
8 .10 

. 

(9™,x)i„visci, 

8 .00 
6.43 
6.88 
8.60 
4.15 
3.43 
2.88 
4.50 
3.58 
2.90 
2.83 
4.34 
2.87 
2.01 
1.92 
3.01 
2.66 
2.96 
2.23 
2.24 
2.29 
2.76 
2.50 
2.44 
2.13 
2.08 
2.19 
1.65 
1.90 
1.90 

At this point we simply abandon the viscous prediction and em
brace the inviscid prediction. This is reasonable since a basic lim
itation of a viscous theory is that it does not necessarily pass to 
the limit of inviscid behavior as n is made very small. 

Conclus ions 
1 We have shown that on flat plate heaters 

' /max constant V/MAJ'"' 

fan 
inv isc id / V fa* 

for viscous liquids. The constant has been evaluated experimen
tally. It is c-0.21. 

2 A similar expression has been developed for small cylinders, 
R' < 3 o r 4 , 

50 

0J 

a. lO 

</> 
o 
l/> 

E 
rr 

£ 
Cr 

TTTT "1—r r-n—ry 
Data: 

: 0.15 O flat plate 

= 2.5 

Equation (31) with constant in 
tor changed to 0.26 

o horizontal cylinder -

E$\>\?u m e r a 

• ? \ o 

_Equation (23) with J > i - - > > 

constant inthe nu- -
merator changed to 0.2 I 
1 i i i i l i i l l 

10 100 
liquid viscosity parameter. M 

500 

(<7max) 

0.26 I'-'.UAj 

7 1-1.08 [-
V ('/ma 

M Ad 't^AR'Y'" 

The constant in the numerator has again been fixed experimen
tally. 

3 The viscous expressions are only valid when they predict 
higher peak heat fluxes than the equivalent inviscid theory. 

4 The derivation of equation (24) required the solution of an 
original stability problem, namely the prediction of the maximum 
stable velocity of a gas jet in a viscous liquid. This velocity is 
given by equation (21), This problem might well find applications 
beyond the present one. 
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A P P E N D I X 
T o get the relat ion be tween T/ a n d p / , equa t ion (17), we a s s u m e 

t h a t the gas-l iquid interface has t h e following two-d imens iona l 

wave form: 

t) = 770 e x p \ia(x - cl)\ 

where a is the d imens ionless wave n u m b e r , kRj, and c is the di-

mensionless wave velocity whose imag ina ry pa r t is t h e growth 

ra te of t h e d i s t u r b a n c e . 

We next define a p e r t u r b a t i o n s t r e a m function 

* - 770-F(y) e x p f / a ( v - cl)\ 

s u c h t h a t 

it = * = F'n a n d v = - * v -ipt-Fri 

(A2) 

(A3) 

S u b s t i t u t i n g these defini t ions of ij, u and v in equa t ions (11) and 
(12) we get: 

-iacFlr\ + iaUF1q -iaU^Frj = -px 

+ Re'i(-Flr)a2 + Fmr)) (11«) 

-acFi) -l aFi] = - / > v + Re~Hja2Fri -iFq) {12a) 

where R o m a n supersc r ip t s denote different iat ions with respect to 

y. 
E l i m i n a t i o n of pressure from equa t ion (11a) and (12a) gives 

F I V - 2a2Fu + «4 /-" = raRcHu - c)(Fu - a2F) - l'nF\ 

(A4) 

Equa t ion (A4) is an Orr -Sommerfe ld equa t ion wi th boundary 

condi t ions: 

7 ( 0 ) = f " ( 0 ) = 0 (A5) 

and a t y = 1, the two condi t ions : 

FU1 -3a-/--1 =ic/Rc\p,/ii ->• a(a2 - 1 / 2 ) / ( p U 2 R , . ) | 

-iaRelcFHl) - U1F{1)\ (A6) 

T h e k i n e m a t i c condi t ion a t t h e interface can be wr i t ten as 

c = F{1) (A8) 

Solut ion of Orr-Sommerfe ld E q u a t i o n . We m u s t now solve 

equa t ion (A4) wi th b o u n d a r y condi t ions (A5) th rough (A7) for 

values of a close to 1 and Re < 1. T h i s choice for a = 2trRj/\ is 

m a d e because X is of t h e order of t h e c i rcumference of the je t . 

T h u s we write a = 1 + B where 0 < 1, and a s s u m e a series form 

for t h e p e r t u r b a t i o n function, F 

F = F 0 + j3F\ + j?F2 (A9) 

S u b s t i t u t i n g these a and F in equa t ions (A4) th rough (A7) we 
get for t e r m s of t h e order of 0°: 

Fn 2F,r + F, 0 (A10) 

T h e b o u n d a r y condi t ions for equa t ion (A10) are: 

F 0 ( 0 ) = F 0
U ( 0 ) = 0, 

F 0
m ( l ) - 3F0'(1) = ?{P + S), a n d F 0

n ( l ) - F 0 ( l ) = iT 

( A l l ) 

For t e r m s of t h e order of /J1 t h e equa t ion and its bounda ry condi

t ions are : 

F j [ v - 2 F , n + F , = |(f/ - c){F„u - F„) - UuF0]-iRe/ii 

(A12) 

F j ( 0 ) = F , u ( 0 ) = 0, F i " ( l ) + F 4 ( 1 ) = 0, a n d 

^ ' " ( l ) - 3 F , ! ( 1 ) = -i{P + S) -i\cF0
l(D + U1{1)F,{1)\ 

(Al) 
In the foregoing equations 

(A13) 

p s h**_. s =_ aRe . „ , „ ; T '= ^ ^ (A14) 
2peUf -R} ' J] 

F azF = TfRc>n (A7) 

T h e solut ions for F 0 and F i can be wr i t ten as follows: 

F 0 = [ 0 . 0 4 3 4 7 - 0 . 2 0 0 8 i ( P + ~S)\{ey - e~y) 

+ | 0 . 0 7 3 2 T + 0 . 0 8 6 8 i ( P + S)}y{ey + e'y) (A15) 

F j = { - ( P + S) + c [ 0 . 5 3 1 9 7 - 0 . 1 4 7 8 / ( P 4- S)\ 

+ C / I ( 1 ) [ 0 . 3 2 7 9 T - 0 . 2 0 4 1 / ( P + S)]} {0.2008/( t '> 1 - c~y) 

-0.086Biy{ey + c"y)} + {2(C - c ) [ 0 . 0 7 3 2 7 

+ 0 . 0 8 6 8 ? ( P + S)\ - 6 f I 1 [ 0 . 0 4 3 4 7 - 0 . 2 0 0 8 ? ( P 

V D p 
+ S)}\{^-{ey-e-

v)}i ^ -{f/H[0.04347 - 0.2008/(P 
8 P 

+ S)\} {<>>'( y 3 / 2 4 - v 2 / 8 ) + p ^ ( v 3 / 2 4 + v 2 / 8 ) } / R e , / / 3 (A16) 

K i n e m a t i c Condit ion at the Interface . T h e funct ions Fo a n d 

F i , eva lua t ed a t the interface y = 1 + TJ ^ 1, are: 

F 0 ( l ) = 0 . 3 2 7 9 7 - 0 . 2 0 4 1 , ( P + S) ( A 1 7 ) 

F , ( l ) = - 0 . 2 0 4 1 ? { - ( P + S) + < - | 0 . 5 3 1 9 r 

- 0 . 1 4 7 8 z ( P + S) 1 + V " ( 1 ) 1 0 . 3 2 7 9 7 - 0 . 2 0 4 1 / ( P + S) ]} 

- c { 0 . 0 4 3 1 7 + 0 . 0 5 1 1 ? ( P + ,S )} ;Re / ,3 - f / n ( D { 0 . 0 0 5 6 7 

- 0 . 0 2 5 8 / ( P + S)}me/i3 (A18) 
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The quantities c, P, and T are complex. Writing them as the sum 
of real and imaginary parts, we have: 

c = cr + ict; P = Pr + iP{; T = Tr+ iT{ : (A19) 

The kinematic condition (A8) at the interface can be written 

c = P 0 ( l ) + 0F,(1) (A8fl) 

Substituting equations (A17) through (A19) in (A8a) and collect
ing real and imaginary parts we obtain 

cr= 0.32797% + 0.2041(1 + /3)P, - f}\0.1085(7,-cr 

+ Trct) + 0 . 0302c ( P i - 0 .0302c r (P r + S) 

+ 0.0669*7'(Dr,- ~0.0416U1(l)(Pr + S)] 

+ i?e[0.0056(7 I I( l)7 ,
i - 0 . 0 2 5 8 t / u ( l ) ( P + 5)) 

+ fle[0.0431(7yr + Trct) - 0.0511r,.P,. + 0 . 0 5 1 1 r r ( P r 

+ S)\ (A20) 

l- C j = 0 .3279T, - 0 . 2 0 4 1 ( 1 + /3)(Pr - S) + /3[0.0652(T rc, 

- TfCi) + 0 .0813(0^ , - + CjPr) + 0,0669Ul(l)Tr 

+ 0 . 0 4 1 6 6 ^ ( 1 -Re\0.0Q56Ull(l)Tr+ 0.0258UU(1)P f] 

- i ?e [0 .0431(T r c r - T y , ) - 0 . 0 5 1 1 ( c r P ( + CiPr)} (A21) 

We are interested in the imaginary part of the wave velocity, as 
it represents the rate of growth of the disturbance. For a neutral 
disturbance (ci = 0), to the first order approximation, equation 
(A21) reduces to 

1.6068 7j _pj_ 

a v V 2peUf
 lR, 

(A22) 

after the substitution of equation (A 14); where T/ now represents 
only the imaginary part, and pi the real part, of tangential and 
normal stresses. 
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A Model to Predict Convective 
Subcooled Critical Heat Flux1 

A friction factor correlation based on pressure drop measurements at burnout in an an
nular channel is presented. From Reynolds analogy and this correlation, critical heat 
fluxes were predicted within ±10 percent of the values measured with ideal geometry (no 
ribs), stainless steel heaters, and H2O coolant flowing vertically downward at a velocity 
of 15 to 45 ft/sec and subcoolings greater than 25 deg C. Tubular critical heat fluxes are 
predicted within ±20 percent using the friction factor correlation and Reynolds analogy. 
A short theoretical discussion is presented. 

Introduct ion 

The prediction of burnout or critical heat flux in forced convec
tion boiling continues to be a challenge to those interested in heat 
transfer mechanisms. Many correlations have been developed for 
specific systems, which are adequate for practical usage. How
ever, the basic mechanisms for burnout are not reliably known, 
and critical heat fluxes for novel heat transfer systems cannot 
presently be predicted with confidence. This paper presents a 
simple method using a friction factor correlation with Reynolds 
analogy to predict critical heat fluxes. 

Theoret ica l D i s c u s s i o n 
Before postulating a physical model of burnout, it is necessary 

to qualitatively examine the phenomena of burnout and nucleate 
boiling at burnout. 

Evidence indicates that heat transfer from a wall in boiling is 
primarily a change of phase phenomenon with vaporization oc
curring at the bubble base and condensation at the top of the 
bubble [1, 2, 3].3 Near the critical heat flux with bubble activity 
at the maximum, it is assumed that essentially all the heat is 
transferred from the wall by vaporization. Bankoff noted that 
near burnout, the temperatures at the top of the bubbles are at 
saturation [4]. Thus, at the burnout condition, the vapor no long
er condenses but expands the bubble at the velocity of the vapor 
leaving the wall. Sabersky and Mulligan [5], and later Jordan 

1 This paper was prepared in connection with work under Contract No. 
AT(07-2)-l with the U. S. Atomic Energy Commission. By acceptance of 
this paper, the publisher and/or recipient acknowledges the U. S. Govern
ment's right to retain a nonexclusive, royalty-free license in and to any co
pyright covering this paper, along with the right to reproduce and to au
thorize others to reproduce all or part of the copyrighted paper. 

2 Present Address: Polaroid Corp., Waltham, Mass. 
3 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division for publication in the Journal 

of Heat Transfer. Manuscript received by the Heat Transfer Division, 
March 13, 1973. Paper No. 74-HT-L. 

and Leppert [6] have shown that Reynolds analogy between heat 
and momentum transport applies in convection nucleate boiling. 
This implies that the heat transfer mechanism from the top of 
the bubbles to the bulk fluid is entirely turbulent convection. 
Hence, burnout would be expected to occur when either vaporiza
tion at the wall or turbulent transport from the bubbles limits the 
heat transfer rate. In the former case liquid cannot reach the wall 
at the critical condition, and in the latter the vapor cannot get 
away from the wall at the critical condition. Vaporization is con
trolling in the low subcooling and saturated boiling region, and 
turbulent transport is controlling in the higher subcooled region. 

Kutateladze 'and Leont'ev suggested that the critical heat flux 
is related to the general problem of flow stagnation with injection 
from the wall [7, 8]. They postulated that an injection stream 
normal to the main stream arises from vapor generation at the 
wall in the nucleate boiling channel. At the critical conditions, 
the injection stream causes a local stagnation of the boiling, two-
phase boundary layer resulting-in film boiling at the stagnation 
point. The criterion for flow stagnation with wall injection of a 
fluid into a stream of the source fluid is given as [9] 

Ginj — 2 / „ j , G s t r (1) 

where fnb is the friction factor with no injection or boiling. Assum
ing that a is the fraction of fluid leaving the wall, Kutateladze 
and Leont'ev derived the following expression for critical heat 
flux at saturation conditions: 

<S>„ 2/„„a( l -a)x(PvPl)
U2U (2) 

For the subcooled region, using superposition, the following ex
pression was postulated 

<J> = 2f„„a(l - a)\(pvPl)
1,2U + h&T (3) 

where AT is the temperature difference of the wall and bulk fluid, 
and the heat transfer coefficient was estimated using the Colburn 
analogy: 
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fnt , pCpU J nb I 

2 y A< (4) 

Considering the forces on a bubble, Chang [10] derived an ex
pression for the critical heat flux that is very similar to equation 
(3). For subcooled boiling, Chang arrived at the following equa
tion with two constants, C\ and C2, adjusted to fit the data: 

<b = [Ci(pvPl)
inx + c2p,cP A r M b ] ( / (5) 

where i \T s u b is equal to the difference between saturation and 
bulk coolant temperature. 

Tong attempted to link the separation criterion to the entire 
range of quality, i.e., subcooled and quality regions [11]. Tong 
suggested the following expression for the critical heat flux: 

</) = 2fBO\p,U (6) 

The friction factor, {no, estimated from boiling experiments is 

/BO=C N^'-'' (7) 

where the constant C was empirically evaluated by relating it to 
both negative (subcooled) and positive qualities, so that equation 
(6) correlated burnout data. The expression for C is 

C -_= 0.88 - 3 . 7 1 6 x + 6.111x2 (8) 

The friction factor calculated from equation (7) was obtained to 
give the best fit of equation (6) to burnout data and was not 
based on independent measurements of the axial pressure drop in 
the boiling channel. 

The similarity between equation (6) and Reynolds analogy is 
apparent; although the liquid momentum is used, the heat ca
pacity of the vapor (in terms of latent heat of vaporization) is 
used rather than that for the liquid. Equation (6) attempts to in
clude both vaporization and turbulent heat transfer effects as do 
equations (3) and (5) via superposition. 

Tong's relative success at fitting both subcooled and quality 
burnout data with equation (6), the reduction of equations (3) 
and (5) at high subcoolings (>25 deg C) to the following equation, 

<t> = hAT (9) 

and the fact that subcooled nucleate boiling data have been cor
related by Reynolds analogy [5, 6] suggest that the critical heat 
flux at high subcooling could be correlated by Reynolds analogy 
112], For Reynolds analogy to predict the burnout heat flux, the 
limiting heat transport must occur between the bubbles and the 
bulk stream, and a critical or burnout friction factor must exist 
which is a function of Reynolds number only. The latter would re
quire that at a given velocity the amount of vapor present at 
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80 

burnout must be constant over the range of subcoolings consid
ered. Fig. 1 shows measured pressure drop data at burnout in an 
annular channel which for higher subcooling (>25 deg C) indicate 
that the void fraction at burnout is not a function of subcooling. 
The small decrease in pressure drop with decreasing subcooling is 
related to viscosity changes. 

Using Reynolds analogy to calculate the heat transfer coeffi
cient at the critical condition, the critical heat flux in the sub
cooled region (7 ' s u b > 25 deg C) is given by 

<b = tf*(plCPi[/AT) (10) 

where AT is the difference between the surface and bulk coolant 
temperatures. The friction factor at burnout is related to the boil
ing pressure drop at burnout by the following equation: 

fBO= irc&PnoDr/2Lp,U2 (11) 

Results discussed in the next section show the adequacy of 
using Reynolds analogy and a burnout friction factor to predict 
the critical heat flux in highly subcooled, forced convection boil
ing. 

Resu l t s 

Pressure drop data at burnout were measured in Savannah 
River Laboratory tests (13). The data used in this study4 were ob
tained on %-in-dia stainless steel heaters 24 in. long with water 
flowing vertically downward past the heater in an annulus. The 
outer surface of the annulus was formed by a 0.875-in-inner-dia 
precision bore glass tube. System pressure was nominally 40 psig, 
and inlet velocities varied from 15 to 45 ft/sec. The water used in 
these tests was deionized, deaerated, and filtered. The heater sur
faces were drawn stainless steel; heaters with circumferential 
marks were not used. Inlet and exit temperatures were measured 
via thermocouples, the latter located sufficiently downstream to 
assure good mixing. The bulk temperature at the burnout point 
was calculated by linear extrapolation between the inlet and out
let temperatures. Because the heaters were uniformly heated, 
burnout always occurred near or at the exit. The heat balances 
(electric power input versus thermal balance on coolant) for these 
tests had an absolute average deviation of 1.9 percent. 

The pressure drop data are shown in Fig. 1 and indicate that 
the pressure drop and hence, friction factor is at most a weak 
function of subcooling. On this basis, the friction factor is as
sumed nonvarying in the following discussion. The friction factors 
were evaluated from these pressure drop data at burnout and are 
plotted versus Reynolds number in Fig. 2. The velocity based on 
inlet conditions is used to calculate the friction factors from equa
tion (11) and the Reynolds number. The bulk coolant properties 
at the burnout site were used to calculate the Reynolds number. 
The use of inlet velocity is adequate where the void fraction is low 
( <5 percent) and constant as in the high subcooled data under 
study herein [14). 

The system friction factor at burnout for the annular channel 
data is predicted by 

/ B 0 = 0.694 ArRe-°-™ (12) 

The change in effective e/De in Fig. 2 with velocity corresponds to 
the effect of velocity on bubble size. Chang [10] derived an ex
pression for the detaching bubble radius as: 

r = ka,/p,U2 (13) 

With constant physical properties, the bubble radius is inversely 
proportional to the square of the velocity. The data in Fig. 2 
(temperature range of ~40 deg C) have e/De of approximately 
0.004, 0.0012, and 0.0006 for velocities of 15, 30, and 45 ft/sec, re
spectively. The functionality of equation (13) would indicate e/De 

values of 0.004, 0.001, and 0.00045, respectively. The larger scatter 

4 Runs 619-835 in reference [13]. 
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of the friction factor data at 15 ft/sec is due to the scatter in the 
pressure drop measurement. 

The critical heat fluxes calculated from equations (10) and (12) 
are shown in Fig. 3 plotted versus the experimental values. The 
wall temperature was calculated using the Weatherhead correla
tion [15]. 

T , - T (47.7 - 0 . 1 2 7 r ^ H j f ^ - ) (14) 

where temperatures are in deg C, and 4> is the burnout heat flux 
in Btu/hr ft2. The agreement between calculated and measured 
values in Fig. 3 is generally within ±10 percent, which is within 
the accuracy of the heat transfer data. The data and correlation 
not applicable to subcoolings less than 25 deg C where accelera
tion effects due to significant void formation become more impor
tant. The correlation should not be extended to higher pressures 
without experimental data. 
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The preceding approach can be extended to burnout in tubular 
geometries. Unlike the annulus that is heated from one side, the 
fluid in the tube is entirely exposed to boiling surfaces. Therefore, 
the friction drag should be all boiling friction drag. The system 
friction factor for the tube may be found by estimating the boil
ing wall friction factor in the annulus. An estimate of the contri
bution to drag of each wail can be found by taking a force balance 
on the annulus and relating the shear stress to the friction factor 
yielding 

/ D , , , , D„ 
fB D„ D'M^BO D„ + D -)/-„„ (15) 

where f(bwBO) is the boiling wall friction factor at burnout, and 
fno is given by equation (12) for the annulus. The nonboiling wall 
friction factor fnb may be taken from a Moody chart. 

The friction factor results calculated for the boiling wall at 
burnout (Fig. 4) can be represented by 

/»* = 7.413 iVD (16) 

Two points of interest are noted from Fig. 4: (a) the velocity 
effect on e/D,, is present in the same way as discussed for the an
nular system, Fig. 2, and (b) for the boiling wall, the power is 
-0.545, which compares to Tong's value of -0.6 given in equation 
(7). 

This friction factor correlation represents boiling effects empiri
cally. The success of this correlation indicates that the boiling 
contribution and the rate of vaporization are important only in 
influencing turbulence at the wall. 

Critical heat flux results calculated using a friction factor given 
by equation (13) are compared with some Savannah River Labo
ratory subcooled, convection burnout data for tubes (Fig. 5).5 

These data were obtained on stainless steel tubes cooled by forced 
downward flow of water. The pressure range of these data was 25 
to 193 psi, and the velocities ranged from 10 to 60 ft/sec. No pres
sure drop data were available for tubes to assess the accuracy of 
the friction factor prediction by equation (13). The experimental 
critical heat flux data for tubes exhibited a much larger scatter 
than the annular data. The agreement shown in Fig. 5 is general
ly within ±20 percent, the accuracy of the data. Initial attempts 

5 A complete tabulation of these data is available from the authors on re
quest. 
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Fig. 5 Comparison of tubular experimental and predicted critical heat 
flux results 

to extend the correlation to other data from the literature have 
not been successful. However, most available data from the liter
ature are for higher pressures. Both the prediction for surface 
temperature and the frictional pressure drop are affected by the 
pressure. Therefore, more critical heat flux data are required with 
pressure drop data to extend the proposed correlation. 

Conclus ions 
The use of Reynolds analogy between heat and mass transport 

and measured pressure drop data provides a simple means of cor
relating critical heat flux data with velocities in excess of 10 ft/ 
sec and subcoolings greater than 25 deg C. A generalized correla
tion based on a friction factor chart will require more critical heat 
flux data on different coolants and coolant conditions (different 
velocity, pressure, and temperature ranges). The correlation also 
substantiates that the void fraction at burnout is constant at 
subcooling greater than 25 deg C and the pressure drop can be 
represented as a frictional loss, i.e., the acceleration caused by 
phase change is constant for conditions considered. The friction 

factor does not appear to be a function of the subcooling. 
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Experimental Study of Film Condensation 
From Steam-Air Mixtures Flowing 
Downward Over a Horizontal Tube 
Experiments have been performed to study the effects of air on filmwise condensation 
from steam-air mixtures undergoing forced flow over a 3/4 in. OD horizontal tube. 
Local condensation rates at the stagnation point are reported for saturation temperatures 
of 100-150 deg F, bulk to wall temperature differences of 3-30 deg F, bulk air mass 
fraction 0-7 percent and oncoming vapor velocity 1-6 ft/sec. For pure steam the 
average value of g/<?Nu, where §N„ is the Nusselt result, was 0.98 ± 0.10, which com
pares favorably with the value of 1.04 predicted by a theory which accounts for vapor 
drag. For steam-air mixtures the reduction in heat transfer was found to be in excellent 
agreement with the theoretical analysis of Denny and South; the average discrepancy in 
q/qttu was —2.7 percent, while the maximum was 7.1 percent. 

Introduction 

u t • MALL CONCENTRATIONS of noncondensable gas in a 

vapor can lead to significant reductions in condensation rates. 
Since the usual industrial situation involves condensation under 
partial vacuum, in-leakage of air diminishes condenser effective
ness in, for example, power generating stations and sea water 
distillation plants. I t is well known that forced vapor flow 
markedly alleviates the deleterious effects of the noncondensable, 
and current design practice is to employ tube and baffle configura
tions which optimize the vapor flow pattern. Analysis of the 
forced vapor flow noncondensable gas problem has been made for 
the vertical wall [ l ] 2 and the single horizontal tube [2, 3]; in the 
latter work it was shown that the condensation rate from steam-
air mixtures, with air mass fractions in the range 0.01 to 0.15, 
approximately doubled a.s the oncoming vapor velocity increased 
from 1 to 10 ft/sec. 

The present study was initiated in order to obtain precise 
experimental validification of the assumptions and techniques of 
the aforementioned analyses. The horizontal tube geometry 
was chosen over the vertical wall as it was easier to model in a 

1 This work was sponsored by the Office of Saline Water on Grant 
No. 14-30-2678, and by the University of California Water Hesources 
Center on Project No. S142. Computer time was supplied by the 
Campus Computing Network of the University of California, Los 
Angeles, Caiif. 

2 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division for publication (with

out presentation) in T H E JOURNAL OF HEAT TRANSFER. Manuscript 
received by the Heat Transfer Division April 12, 1973. Paper No. 
74-HT-D. 

small scale laboratory experiment. In [2] self-similar solutions 
to the coupled two-phase flow problem were obtained which are 
valid at and near the forward stagnation point. In [3] a forward 
marching solution procedure based on finite difference analogs to 
the governing conservation equations was used to obtain solutions 
for an isothermal tube up to the vapor boundary layer separation 
point (<~110 deg). Exact solutions for the remainder of the 
bottom half of the tube are not available. In the experimental 
study we have emphasized the measurement of local condensa
tion rates at the forward stagnation point in order to effect direct 
comparisons between analysis and experiment. 

Previously, experimental studies of the effects of noncon-
densables on filmwise condensation of steam on a horizontal tube 
have been made by Othmer [4] and Henderson and Marchello 
[5]; however, in both cases the vapor flow pattern was uncertain 
and relatively quiescent. The data obtained were correlated by 
empirical curve-fitting owing to the unavailability of a theoretical 
analysis. 

Apparatus and Procedure 
Tes» Loop. The major components of the experimental system 

are shown schematically in Fig. 1. The system operates es
sentially closed loop, steam being generated in a 12 liter RB flask 
fitted with a 3.5 kw immersion heater and condensate being re
turned to the boiler from the heat transfer tube and auxiliary 
condenser. After testing several designs for the heater, it was 
found that an 0.5 in. dia coil of 18-gauge nichrome wire wrapped 
with fiberglass tape produced rather smooth boiling down to the 
lowest pressures considered. Air entered the system via a 
sparge located beneath the heating coil, the resulting flow of air 
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Fig. 1 Major components of the system 

bubbles serving to further enhance smooth boiling. The air 
flow rate was measured with a Fischer-Porter all glass rotameter 
of accuracy 2 percent. Power input, to the heater was calculated 
from voltage and current measurements using (I.E. type AP-9 
volt and ammeters having an accuracy of O.o percent at full 
scale. 

The 3 ft long test chamber was fabricated in three sections 
from 5 in. ID, 0.25 in. thick glass pipe, the section joints being-
sealed with Viton 0-rings. To promote mixing, the entering 
steam-air mixture was directed upwards toward the hemispherical 
chamber top and then down through a packed bed of S mm glass 
raschig rings. A copper-constant an thermocouple probe for 
checking superheat of the oncoming vapor (negligible at <1 deg 
F) and a manometer tap for measuring pressure were positioned 
midway between the packed bed and the heat transfer tube. 
The mercury manometer was mounted in a plexiglass case 
through which hot air was blown to prevent vapor condensation. 
A cathetometer of least count 0.05 mm was used to measure 
column heights, the reference pressure in the open leg being-
measured with a certified absolute barometer. Temperature 
corrections for steam saturation temperatures based on mercury 
at 32 deg F [(>] were effected by means of a set of 10 thermo
couples cemented to the manometer legs. 

By-pass steam from the test chamber was condensed on a 
copper coolant coil, the auxiliary condenser being exhausted 
through an 0.75 in. aspirator preceded by a check valve and water 
trap. Coolant flow, consisting of two parts water and one part 

ethylene glycol, was supplied to the heat transfer tube and 
auxiliary condenser from a 3-ton Freon-12 refrigeration plant. 
The necessary differences in coolant temperature within the tube 
and auxiliary condenser were effected by splits between the re
frigerant e/Hux and that from an electrically heated intermediate 
mixing tank. In this way, the coolant temperature to the tube 
could be varied from 20 to 100 deg F while maintaining a constant 
load on the refrigerator. 

The test loop was insulated with polyurethane foam and 
cotton batting; the resulting low heat losses (<2 percent) enabled 
both the test chamber vapor velocity and air mass fraction to be 
determined from a system energy and mass balance [7]. Care 
was taken to minimize the possibility of contaminating the 
steam and to ensure a vacuum tight system. Glass was used 
wherever possible and the only organic materials in contact with 
the steam were the Viton O-rings at the joints, and lead-ins 
(Cajon ultra-torr and Swagelok). 

Heat Transfer Tube. The heat transfer tube was fitted with five 
pairs of thermocouples which were calibrated to act as local heat 
flux meters. Various details of the tube are shown in Fig. 2. 
Stainless steel was chosen because its low thermal conductivity 
ensures a large temperature drop across the thermocouple pairs. 
The thermocouples were fabricated from Omegaelad 38-gauge 
iron-const antan wire with MgO insulation encased in a 0.020 in. 
stainless steel sheath. Installation of the inner thermocou
ples was relatively straightforward [7J. The outer thermocouples 
were prepared by spot welding (in an argon atmosphere) a junc-

•Nomenclature-

03 = mass transfer driving force, (mi.*, 
— » i i , , ) / ( m i , » — 1) 

CP = heat capacity (Btu lb deg R) 
D = tube diameter (ft) 

£>i2 = binary diffusion coefficient (ft2, 

sec) 
9 = normal gravity (ft sec'), also 

mass transfer conductance (lb •' 
ft2sec) 

hf0 = latent heat of vaporization (Btu/' 
lb) 

k - thermal conductivity (Btu sec ft 

deg R) 
m = mass fraction 

m" = condensation rate (lb/ft2 sec) 

<l 

Re 
So. 
T 

u, v 
Co, 

t, V 
I) 

pressure (atm) 
Prandtl number, ('pfi'k 
wall heat flux (Btu ft2 sec) 
Reynolds number, p('r.D:)i.„ 
Schmidt number, n.'p'Dn 
temperature (deg F) 
velocity components (ft/see) 
oncoming velocity (ft/see) 
boundary layer coordinates (ft) 
condensate film thickness (ft) 
angle measured from forward 

stagnation point 
absolute viscosity (lb 'ft sec) 
density (lb 'ft.3) 
shear stress (lb 'ft sec2) 

Subscripts 

i = at the liquid-vapor interface, also 
inner thermocouple 

/ = liquid 
Nit = Nusselt theory result 

o = outer thermocouple 
.s = in the vapor phase, just adjacent. 

to the interface 
tt = in the liquid phase, just adjacent 

to the interface 
>• = vapor 

iv = tube surface 
co = bulk vapor 

1, 2 = vapor and noncondensable, re
spectively 
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All dimensions are 
in inches 

0/O» 

installed outer 
thermocouple 

Fig. 2 Details of the heat transfer tube 
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Fig. 3 Normalized heat flux at the stagnation point—all stations 

tion about 0.25 in. from the sheath. The bare wires leading to 
the junction were coated with a thin layer of Saureisen No. 1 
porcelain cement and were then vapor coated with about 5000 A 
of copper to promote wetting by solder. The thermocouples were 
then soft-soldered within longitudinal grooves with the junctions 
being positioned just below the surface (~0.004 in.). Finally, 
the tube was carefully polished and about 0.0035 in. of copper 
plating was deposited, giving a final OD of 0.7505 in. 

The thermocouple pairs and associated selector switch and lead 
wires were calibrated in situ at I he Leeds and Northrup Standards 
Laboratory, North Wales, Pa. Calibration equations for each 
thermocouple were then developed, following Benedict and 
Ashby [8], and included in the data reduction code. Opposed 
pairs of thermocouples were calibrated as heat-flux-meters in a 
rig consisting of a metered electrical heater uniformly wound on 
the outside of the tube together with a coolant flow loop. Spuri
ous heat losses and end effects were minimized through careful 
insulation and use of guard heaters. The calibration constant 
#cai = q/(T0 - T,) took on the values 1044, 710, 767, 932, and 
997 Btu /hr ft2 deg F for meters 1-5, respectively. The variation 
in Kcai is due mainly to variations in location of the inner thermo
couples. The thermocouple emf outputs were measured with a 
Leeds and Northrup K-2 potentiometer having a least count of 
0.0005 mV. Further details of fabrication, calibration, and 
instrumentation of the heat transfer tube may be found in [7]. 

Test Procedures. Prior to performing a series of runs, the system 
was leak tested; usually, this was done by evacuating the system, 
letting it fill with water and then searching for air bubbles. In 

addition, periodic checks for leaks were made by measuring the 
air concentration during pure steam runs using a Claassen-type 
gauge; in no instance did the latter tests yield a bulk mass fraction 
of air in excess of 5 X 10~5 which, according to the analysis in 
[2], has no measurable effect on condensation rates. Filmwise 
condensation was easily established on a day-to-day basis by-
means of the freezing technique first described by Mills and 
Seban [9]. After a film had been established, the detrainment 
pattern of drops was observed and tube releveled if necessary by 
adjusting the rig support screws. After running for a few hours, 
the rig was presumed to be at steady state for given operating 
conditions and test data were then recorded at approximately 30 
min intervals. Steady state was assumed to exist when the 
steam saturation temperature varied by less than 0.1 deg F be
tween successive intervals. When operating conditions were 
changed, a new steady state usually was reached in about one 
hour. 

Results and Discussion 
Pure Steam. Local values of the flux q, as measured by the heat 

flux meters, were normalized by values of (/ calculated from Nus-
sell theory 

r /N„(#) 
' 2 W „ o - T,„yhlagPl(pi ~ p,.)sin ''• 

4* 
iDfj. P • • I sin 

Jo 
''Odd 
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with liquid properties, taken from sources listed in [10], being displayed in Fig. 4 for 8 in the range — 45 deg < 6 < 13") deg. 
evaluated at T, = 7',,. + 0.35(7'.,, — 7',, 1. The local surface tern- Local data as measured by each station at locations 8 = 0, 45 
perature Tw was obtained by linearly extrapolating the outermost 90, 135 deg are summarized in Table 2. The inerea.sed value.s of 
thermocouple reading 7',, a are attributed to temperature fluctuations at 9 = 135 deg F 

7',, - T„ + (/(5,,'A-i + S, /«-,) 
( ~ ± 2 deg F) associated with the detachment of liquid droplets 
from the bottom of the tube. For quiescent steam, Chung [11] 

with 1 and 2 denoting soft-solder and copper, respectively. The has shown by means of numerical solutions to the two-dimen-
conductivities /,-, and /.*•. were taken as 25.S and 220 Btu hr ft deg s i o n a l h e a ( conduction problem in the wall, coupled with noniso-
F while o, and <S, were estimated to be 0.004 and 0.0035 in. For thermal Nusselt theory, that the assumption of purely radial 
ihe pure steam runs, T,„ and i T s T,„ - T„. varied from 108 to heat flow is excellent up to 9 = 135 deg. His results indicate 
152 and 3 to 21 deg F, respectively. Stable operation of the sys- that the heat-flux-meter calibration constants should be in error 
tern required oncoming velocities which were not inappreciable, '>>' "« more than 1 percent at 00 deg and by only 1 </, percent at 
the range being 1.25 to 3. Hi ft see. An analytical study by 135 deg. 
South [3] indicates an increase in ,/ </xu, due to vapor drag, A complete error analysis was performed [7] to ascertain 
of 2 to 8 percent in this range of ('„. However, a careful ex- probable causes for the slation-to-stalion variations of q'qKu. 
animation of the experimental results revealed no discernible It was concluded that the probable cause was inaccurate extrapo-
systematie effect of t his parameter owing to the background level polation of 7\, to obtain 7',,, as augmented by inaccuracies in the 
of random error (see Fig. 3). Thus the data for pure steam in heat-flux-meter calibrations. Similar difficulties have plagued 
this velocity range has been lumped together and compared with other researchers attempting precise measurement of condensa-
an average value of (/ <;x„ predicted by t he Soul h analysis. fi<>» heat 1 ransfer (see, for example, [ 12]), and we view our results 

Typical data for q r/xu versus ST at the forward stagnation f o b e satisfactory. Indeed, it now will be argued that the Xus-
poin't (9 = 0 deg) are shown in Fig. 3 for each of the five heat-flux- sell theory affords a more precise method for calibrat ing the heat 
meter stations. Complete tabulations are given in [7); the transfer tube. Such a calibration was carried out for each station 
averaged values of ,/ ,/xu together with standard deviations a tire >rsing # = <> d<K J a ta , and the new calibrations were used to re-
reproduced in Table 1 for each of the five stations. The average dnee the steam-air mixturedata. 
for q qSt, for all stations is 0.98 :- 0.10, which compares favorably Steam-Air Mixtures. Heat transfer data for condensation from 
with the average predicted value, 1.04 (obtained by running the steam-air mixtures were obtained at 8 = 0. 45, and 90 deg. Due 
computer code developed in [3) lor a range of parameter values ••<> increased effects of the nonisothermal wall for 8 > 0 deg with 
corresponding to the experimental conditions). Ras present and the lack of a suitable theory for comparison, 

Typical data for local values of q qs„, using station 4, are attention will be primarily focused on the stagnation point data. 
Using station 3, data were obtained at 6 — 0 deg with saturation 
temperatures, bulk air mass fractions, oncoming vapor velocities, 

Table 1 Summary of stagnation point pure steam results and bulk-lo-wall temperature drops in the ranges 98-142 deg F, 
0.0006-0.07, 0.95-5.80 ft sec, and 5.3-31 deg F, respectively. 
Due to the complexity of both system operation and data redtie-

Station q i/su 

1 0.87 0.01 . , . , . ,, . 
•> o ()- Q ()] tion, the problem parameters were not varied systematically; it 
3 1.07 0.03 would, for example, have been impractical to vary AT while hold-
'\ 1 01 0.01 j ng '[\t m\,a„ and L'„ fixed. Instead, the parameters for a given 
'' experimental run were introduced into a computer code developed 

\verage 0.98 0,01 by South [3] to obtain numerical solutions of the forced flow 
noncondensable gas problem; these results were then compared 
with experiment. The Appendix of this paper presents the ana
lytical formulation of the theory. 

Typical results for comparison between theory and experiment 
at 0 = 0 are given in Fig. 5, where q/qxu is seen to range from 
0.27 to 1.00 for the parameter ranges studied. Again, complete 

2()5 0 03 tabulations are given in [7]. The average percent discrepancy 
4 J.01 0.02 
•") 1.03 0.02 (?/?Nu)exp — ((?/gNu)Num 

6 = 100 
Average 0.99 0.02 (?/?Nu)Num 

Table 2 Summary of pure steam data for the upper three quarters of the 
tube 

Station 7''/Xu o-

1 0.88 0.01 
2 0.95 0.01 

Fig. 4 Normalized local heat flux as measured by station 4 
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Fig. 5 Comparison of steam-air experimental stagnation point results 
with numerical solutions 

between theory and experiment is — 2.7 percent, the maximum 
deviation being 7.1 percent. The validity of the physical model 
and analysis of [2] has been therefore established in the range of 
parameters tested. The upper limit of 6 ft,sec on l>a wns set 
by the maximum power input to the boiler (3.5 kw). At 6 ft/sec 
the effect of vapor drag on the liquid film is relatively small so 
that we cannot claim that this feature of the theory has been 
adequately tested. However, it is important to note that the 
dominant effect on condensation rate of vapor velocity is through 
the mass transfer conductance and not through vapor drag. 
The reader is referred to [2] for a detailed presentation of the 
theory and interpretation of the effects of the problem parameters 
on q/(jNa- Of interest in the present context, however, is the 
apparent success of the theory at the low Reynolds numbers 

16 < Re = pDUJum < 75 

which obtained in the current study: Further, it is found that a 
simpler semi-empirical theory reported in [2, 3], in which the 
mass transfer conductance g was taken as 

and the interfacial shear r as 

T = (T„"''» + T_1
,,/»)Vn 

where 0 and — 1 denote expressions [3] for TO" —»• 0 and m" —• « j 

respectively, also is in excellent agreement with experiment. 
For the data reported here, the average discrepancy between the 
simplified theory- and experiment is about the same as that cited 
in the foregoing for the exact theory, and the simplified theory is 
recommended for engineering calculations. 

For completeness, typical results for the local heat transfer co
efficient over the upper half of the tube are displayed in Fig. 6. 
Apart from the expected effects of noncondensable gas on the 
level of heat transfer, the experimental results indicate a nearly-
uniform heat flux on the upper half of the lube, rather than the 
monotone decreasing distribution predicted by isothermal wall 
theory; this is due to the relatively large resistance of the wall and 
inside film. Due, however, to increased uncertainty in the 
accuracy of the heat flux meters as caused by nonradial flux lines 

Curve U m, T (>F) T -T U F ) 
co 1 )Co to co W 

( f t / sec ) 

0.0126 

0.0276 

0.0312 

0.0540 

0.0700 

117.2 

116.1 

101.9 

104.8 

105.5 

11.2-12.9 

9.8-12.2 

14.5-18.0 

17.5-21.7 
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Fig. 6 Local values of heat transfer coefficient h = q/[T„ — T,r] for 
steam-air 

away from the stagnation point, further conclusions are not 
warranted. 

Conclusions 
1 For pure saturated steam <//oN-u at the forward stagnation 

point was found to be 0.98 ± 0.10. For the range of parameters 
tested, a theoretical analysis, accounting for the effects of vapor 
drag, gives q/q^u = 1.04. The discrepancy is attributed to in
accurate tube surface temperature measurements. 

2 For steam-air mixtures q/qsu at the forward stagnation point 
was found to be in excellent agreement with predictions of a lami
nar boundary layer analysis by Denny and South [2]. The 
average discrepancy between experiment and theory was —2.7 
percent, while the maximum discrepancy was 7.1 percent. 
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A P P E N D I X 

Analytical Formulation 
Coordinates x and y are taken along and normal to the tube 

wall with x measured from the forward stagnation point, 0 = 0 
deg; the corresponding velocity components are u and v. The 
oncoming vapor-gas mixture has velocity I r„, vapor mass fraction 
?//],„., and saturation temperature rfa„. The tube has radius R 
and the surface is at 7V. The governing equations are taken as 

dx 
i) + -- (p,v) = 0 

i>y 

du On d ( bn\ x 
pvV - + p,v - = - [ ixr : - 1 + p,.(f sin -

dJ dy dy \ dy / ft 

drm dnii d (p.,, dmA 
p,.u , + p,v -:--- = : - 1 • —•- 1 

dx dy dy ySe dy / 

£>T i>T 0 ( pv dT\ 
P„U - + pvl'—- = ~ 1 -—""-- 1 

dx dy dy \ P r dy J 
p.,. QT 

+ :•>-: 
d In CPr t Pr CP1 — CPZ 
"'"". "T " "" ' ~~Z~~ 

dy be (,,,,, 

ill 

dx 

dmt 

(Al) 

(A2) 

(A3) 

(A4) 

for (he vapor boundary layer, and 

iPu 
Pi 

dy1 
pig sin (x/R) 

dP 

dx 

iPT 
= 0 

(A5 

(A6) 

for the liquid, film. Neglecting second order effects of nonuniform 
suction, tlie static pressure gradient is 

dP 
--• \(ApJ'J/R) cos (x/R) - p;,.g} sin (x/R) (A7) 

Equations (Al) through (A(i) are subject to the boundary condi
tions 

it -* ue ----- '21-a, sin (x/Ii), »ti-* nil,„, and T—-T„, (AH) 

at the edge of the vapor boundary layer; 

a = 0, and T = 7'„ (A9) 

at the tube surface; and 

u\u = ui, -- m (A 10) 

(Al l ) 

(A12) 

(A 13) 

(A 14) 

at the vapor-liquid interface. In equation (A13) thermodynamic 
equilibrium is assumed to hold. The condensation rate is given 
by 

Ml 

Tu 

or 

d«j 

•-•-• ih" m 

= T, 

" -

dit\ 
P-v ' -

t>.Vi. 

,, - p»'Di2 

= 7',(«,,», 

ih"h/g + k 

d»i,\ 

dy \, 

P) 

dT\ 

*dy\ 

pvVj., = in = - , I pu<h)\ 
dx J 0 

(Al 5) 

where 8 is the condensate film thickness. Thermophysical 
properties for steam-air mixtures were evaluated following (1). 
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Prediction of Transpired Turbulent 
Boundary Layers 
A model for the mixing length distribution near the wall in turbulent boundary layer 
flow with transpiration is presented. The model is based on a new formulation of the ex
ponential damping function originally suggested by Van Driest. The analysis used to 
evaluate the damping function employs the same set of assumptions successfully used by 
several investigators in the past to develop the law of the wall with blowing. This mixing 
length model is then used with the calculation method previously developed by the au
thor to solve the governing conservation equations of mass, momentum, and energy in 
partial differential form. Predicted velocity profiles, skin friction coefficients, and Stan
ton numbers are compared with experimental results taken over a wide range of transpi
ration for both incompressible and compressible flows. 

I n t r o d u c t i o n 

In recent years, considerable research activity on the transpired 
turbulent boundary layer (both with blowing and suction) has 
been observed. Flows with transpiration have continued to be im
portant in applications as a means of providing cooling for sur
faces and for boundary layer control. Several recent experimental 
programs [1, 2, 3]1 have contributed to our understanding of the 
manner in which wall blowing or suction influences skin-friction 
and heat transfer. 

Considerable progress has also been made in recent years in 
calculation methods for turbulent flows. Differential methods, 
which employ a finite-difference technique to solve the governing 
conservation equations in partial differential form, have been 
shown to be an effective way of predicting turbulent flows under a 
wide range of conditions, including heat transfer and pressure 
gradients [4, 5, 6]. These methods employ a mixing length or eddy 
viscosity model for the turbulent transport mechanism. Models of 
this type for wall boundary layers have been found to be remarka
bly general, being largely independent of Mach number, heat 
transfer, and to a large degree, pressure gradient. Some workers 
have been exploring more complex models for turbulent flows 
which require the simultaneous solution of one or more additional 
differential equations. These models, discussed by Launder and 
Spalding [7], offer great promise for turbulent flows in general but 
usually result in predictions which are in agreement with simple 
mixing length theory for flows which are nearly in equilibrium. 

Several workers have employed differential methods to predict 
flows with transpiration [1, 5, 6, 8-11]. At this point the generali
ty of the simple mixing models which work well for flows over im-

1 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division for publication in the JOUR

NAL OF HEAT TRANSFER. Manuscript received by the Heat Transfer 
Division, November 6, 1972. Paper No. 74-HT-M. 

permeable walls breaks down and some modification is required 
near the wall to accurately predict flows with anything but very 
small blowing rates. Since several investigators, especially Ste
venson [12], Squire [13], and Simpson [14], have observed that 
the experimental data for transpired boundary layers still indi
cate the existence of a fully turbulent region for which the mixing 
length / is proportional to X y, where X is the von Karman con
stant, just as for flows with no transpiration, the modification 
typically has been to the Van Driest [15] damping function which 
has been a part of the model employed by most investigators to 
date. All of these analyses except that of Cebeci [6] have utilized 
additional empirical input based on recent experiments in order 
to achieve this modification. A detailed description of the status 
of analytical and experimental research on turbulent boundary 
layers with transpiration can be found in the recent reviews by 
Jeromin [16] and Coles [17]. 

The purpose of the present paper is to propose a generalization 
of the Van Driest damping function to handle flows in which the 
shear stress near the wall varies significantly. This interpretation 
of the damping function together with the analysis sometimes 
known as "the law of the wall with blowing" [12, 13] leads with 
no additional empirical input to a mixing length model which 
predicts well most details of the transpired turbulent boundary 
layer. This model, like all others suggested to date, is based on 
"empiricism" but it differs from most others introduced recently 
in that it suggests a generalization of the damping function suit
able for flows with transpiration and then predicts the influences 
of the transpiration on the mixing length by solving an approxi
mate form of the momentum equation near the wall. This is in 
contrast with the most common procedure suggested by others 
which essentially maintains the original form of the damping 
function proposed by Van Driest but modifies the magnitude to 
account for blowing according to a curve fit to the available ex
perimental data. 

This mixing length model is then used with an explicit finite-
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difference method [4, 5, 18] to solve the governing conservation 
equations for several incompressible and compressible transpired 
turbulent boundary layer flows with and without heat transfer. 
Predicted velocity profiles, skin-friction coefficients, and Stanton 
numbers are compared with experimental results. 

Analys i s 
The Conservation Equations. Neglecting normal stress 

terms, the equations governing the two-dimensional compressible 
turbulent boundary layer can be written as 
Momentum: 

dll dll du„ 
pu - + (pr + p'v') = - = f,eue -£- + ̂  (n ^-pu'r' ) 

Energy 

dll 
pi , °Ji + (pr + p'v') 

dx 

3tf 

on 
= ^M-JZ~P>''h' + ti{[i. — - PM'v') \ (2) c)y 3 V d\< 

Continuity: 

State: 

(pu) 
dV 

(pr + p'v') = 0 

P/P = RT 

Appropriate boundary conditions are 

u(x, 0) = 0, c(.v, 0) = c„., 

dll , . . fih , l im , . 
— lv,0) = Cr- )„ , , (, ^ «(.V,.V) 

(3) 

(4) 

11 (x, 0) = H,L, or 

«c(-v), l im H(x,y) =H„(x). (5) 

In addition, initial values must be provided for the axial compo
nent of velocity and the enthalpy: 

u(x0, v) = F{ (y), //(.v0,y) = Ft(y), (6) 

and ue(x) must be specified for pressure gradient flows. 
Model for the Turbulent Transport. Using Prandtl's mixing 

length concept, it is assumed that 

(7) , , • i \ d u \ d u 

where pl2\du/dy\ will be identified as pr, a turbulent or "eddy" 
viscosity. Thus the total or effective shearing stress can be de
scribed by 

du 
dj 

Jt is assumed that the turbulent diffusivities for heat and mo
mentum are related in a manner analogous to laminar flows re
sulting in 

= (11 + Mr) — (8) 

kT = cppT/PrT (9) 

where kT is the turbulent or eddy conductivity and Prr is the tur
bulent Prandtl number which was set equal to a constant value of 
0.9 for all predictions of this paper. The turbulent conductivity 
concept allows 

- pv'h' = (Mr/Prr) g 
= O i T / P r T ) (IIT/VTT)U —-

It is assumed that the mixing length is given by 

0 .089 
1/5 = 0 . 4 1 Dy/5,v/5 

0.41 D 

0.089 

(10) 

(11) 

(12) 1/6 =0 .089 , v/8 > QAlD 

where D is a damping function which accounts for the effects of 
the kinematic viscosity on the turbulence near the wall and 6 is 
the boundary layer thickness. For flows without transpiration, the 
form suggested by Van Driest [15] works well: 

D = l-e-»/K. (13) 

The Mixing-Length Distribution for Transpired Flows. To 
generalize the damping function to flows with transpiration let 

D = 1 - e" (14) 

where z must specialize to y + /26 for flows without transpiration. 
The term e~z must be a function which equals one at the wall 
and becomes negligibly small in the fully turbulent region where 
experimental evidence indicates that I = X y requiring that D = 
1. Since the function z in effect bridges the gap between the wall 
where the kinematic viscosity plays the dominant role in the mo
mentum transport mechanism and the fully turbulent region 
where turbulent transport is dominant, it seems plausible that z 
should contain parameters reflecting the state of fluid stress at 
the wall and near the beginning of the fully turbulent region or at 
some reference point within the fully turbulent region. Flows for 
which z = y + / 26 works well are those for which the shear stress is 
nearly constant throughout the wall layer. It is proposed that 
when the shear stress does vary significantly near the wall, a gen
eralized form for the damping function, which to date appears to 
lead to good agreement with a wide range of experiments, can be 
based upon 

z = (Pwy/2Sp.J(T/pJn(TFT/Tjn (15) 

where T is the local shear stress and TFT is the characteristic 
shear stress near the beginning of the fully turbulent region. 
Equation (15) is perhaps the simplest functional form which con
tains the stress quantities which are believed to be significant 
and yet reduces to the well-established Van Driest form when the 
shear stress is constant near the wall. For unblown flows the fully 
turbulent region begins for y+ somewhere between 26 and 60. Cu
riously enough, the analysis of considerable experimental data [2, 

•Nomenclature-

B = blowing parameter, pwvw/peue 

Cf = local skin-friction coefficient 
:p = specific heat at constant pressure 
h = specific enthalpy 

u2 

total enthalpy, h + -

k = thermal conductivity 
/ = mixing length 

M = Mach number 
Pr = Prandtl number 
R = gas constant in ideal gas equation 

of state 
Re. = Reynolds number, peuex/)ie 

Re« = Reynolds number, peue8/pe 

St 

T 
u 

u* 
u+ 

V 

vw
 + 

X 

y 
y+ 

6 

Stanton number, k(ST/dy)w/ 
PeltAHaw ~ Hw) 

absolute temperature 
x component of time mean velocity 
(TW/PW)1'2 

u/u* 
y component of time mean velocity 
vw/u* 
distance along surface 
distance normal to wall 
dimensionless distance, pwyu*/Pui 
boundary layer thickness 
momentum thickness 
dynamic viscosity 

p = time mean density 
T = total shear stress 

Subscripts 
e = evaluated at outer edge of bound

ary layer 
w = evaluated at wall 
T = turbulent flow 

Superscripts 

( )' = primes denote fluctuating quanti
ties 

( ) = bars denote time mean quantity 
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14, 16] suggests that the beginning of the fully turbulent region 
(region of straight line velocity profile in law of the wall with 
blowing coordinates) is largely independent of transpiration. In 
the present work we will assume that the shear stress characteris
tic of the beginning of the fully turbulent region for damping pur
poses, TFT, occurs at y + = 26. It should be pointed out that the 
basic form of the damping function is independent of the extent 
of transpiration, i.e., does not contain vw

+ as a parameter. 
Using this model, TFT can be evaluated by using the well-

known [13] approximate solution to the momentum and continui
ty equation which results when streamwise derivatives are neg
lected near the wall: 

^ - = 1 + (V, V (16) 

Finite difference methods whicii predict velocities at the i + 1 
level based on stress gradients approximated at the i level could 
then use equation (16) to evaluate both the local j and TFT in 
equation (15) to evaluate the damping function, the latter simply 
by evaluating u+ at y + = 26.0. Here i is the finite difference 
index corresponding to the x direction. Alternatively, TFT can be 
evaluated by utilizing the "law of the wall with blowing" which 
can be developed from equation (16) with the additional "fully 
turbulent" assumptions that x = pl2\du/dy\du/dy and I = x y. 
This results in 

* = — [ ( ! + ,.u,v)i .'2 _ (i + Vv;„a*Y '•- ] = I in | I L ( 

V ' ^ (17) 
The term u„+ and ya

+ are constants of integration which can 
be evaluated as ua

+ = 11.0 at ya+ = 11.0 as suggested by Simp
son [14] who found that these constants appeared to be nearly in
dependent of the transpiration rate. Making this evaluation of 
the constants ua+ and ya

+ and letting the von Karman constant 
equal 0.41 gives 

* = ^ T [ ( 1 + r „ V ) 1 , ! + ( 1 + 1 1 0 1 / 2 l = o 7 4 r 1" \jj\ 

(18) 

For flows without transpiration, equation (17) reduces to the law 
of the wall for impermeable surfaces in the form 

"* = fT4T l n v* + 5 - 1 5 ( 1 9 ) 

Letting <j> = 2.09 for the beginning of the fully turbulent region, 
corresponding to y + = 26, TFT can be computed in terms of vw

 + 

and TW by combining equations (16) and (18): 

l£X. = 1.0 + 1 . 0 9 2 r , / 2 + 2 . 0 9 c , / ( l + l l c , / ) l / 2 + l i e , / 

(20) 

The damping function then becomes 

D = 1 - exp { - (p„,v/26/iK,)(T/p,i,)
1 / 2 

[1 + 1 . 0 9 2 c , / 2 + 2 .09(1 + l i e , / ) 1 7 2 + l l r , / ] 1 / 2 } (21) 

In equation (21) the local shear stress T can be evaluated in the 
manner most compatible with the calculation method or analysis 
scheme being utilized. In all results presented in this paper, T was 
evaluated as indicated in equation (16) and TFT according to 
equation (20) except as noted below for flows with pressure gradi
ents. 

For transpired flows without pressure gradient, predicted skin 
friction coefficients made by evaluating TFT according to equation 
(20) and by using T fory+ = 26.0 from the solution at the i level, 
agreed to within 1 percent, which tends to substantiate that 
streamwise derivatives are indeed small very near the wall. Since 
good results have been obtained in previous work [4] by evaluat
ing all properties in the damping function at wall conditions, 
equation (17), which assumes constant density, has also been 
used in developing the damping function for compressible flows. 

Comments on Flows With Pressure Gradients. For flows 

with transpiration the damping factor clearly needs modification 
in order for a mixing length model to provide good agreement 
with experimental results. The matter is not so clear cut for flows 
with pressure gradients, and reasonably good agreement with ex
perimental data is often observed for flows with no transpiration 
when the damping factor in the form originally suggested by Van 
Driest, equation (13), is used. It is doubtful that sufficient experi
mental data exist for both favorable and adverse pressure gradi
ents with and without transpiration to allow a conclusive study of 
transport processes very near the wall. Based on comparisons 
with the favorable pressure gradient data of Julien [19], the fol
lowing modification to the damping factor resulted in small 
changes in the predicted skin friction coefficient in the right di
rection as to give better agreement with the experimental results. 

If streamwise derivatives continue to be negligible near the wall 
(this assumption certainly becomes more questionable for flows 
with pressure gradients), the momentum equation can be inte
grated near the wall to give, in dimensionless form, 

7/r„, = 1 f ,•„.•„* + />«v* (22) 

whe re 

Evaluating r in equation (22) according to mixing-length as
sumptions (T = X'2y2\du/dy\du/dy) leads to an expression which 
cannot be integrated analytically for flows with both transpira
tion and pressure gradients. Thus it does not appear possible to 
develop an expression from equation (22) analogous to equation 
(18) which would be "the law of the wall with blowing and pres
sure gradient." This integration was circumvented in the present 
calculations by evaluating T in the damping function according to 
equation (22), using values for uw

 + , u + , p* obtained at station i to 
compute the new velocities from the governing equations in finite 
difference form at station i + 1, where again i is the index associ
ated with the i direction. This procedure is completely consistent 
with the finite difference procedure [4] in that the finite differ
ence molecules used for the x momentum equation were centered 
about the point (i, j). TFT was evaluated from equation (22) for y + 

= 26.0. 

Comparison of Calculated and Exper imenta l Resul t s 
In order to assess the effect of transpiration on the damping 

function, a damping parameter .4* is commonly defined accord
ing to 

£> = 1 - exp [. - ( v p „ , / f i „ , n ij/pj'2) (23) 

Comparing equations (21) and (23) it is clear that, in the absence 

of pressure gradients, 

A* = 26 / [ 1 + 1.092 c , / 2 

+ 2.09(1 + l l c , / ) 1 / 2 + l l c , / ] 1 / 2 (24) 

and that A+ = 26 for flows without transpiration. It should be 
pointed out that, according to the present definition, the value of 
A+ does not reflect the entire influence of transpiration on the 
damping function because in this work the local r also appears in 
the expression for D and, according to equation (16), r = TW + 
VW

 + U+TW. Thus for flows with blowing, the viscous sublayer 
thickness is always less than indicated by equation (24) alone. 
Other workers such as Cebeci [6], who do not include the local r in 
their damping functions, consequently employ different definitions 
of A + . This should be kept in mind as comparisons are made. Fig. 
1 shows a comparison between A+ computed according to equa
tion (24), the correlation equation of Kays [1], and the data of 
Simpson [14]. The general agreement between the present analy
sis and the correlation equation of Kays [1], which is reported to 
be based on an extensive series of experiments, is quite encourag
ing. 

Fig. 2 shows some comparisons of predicted skin friction coeffi
cients with the experimental data of Simpson [14] for four differ
ent blowing ratios, B = pwVw/peUe- The predictions of Cebeci [9] 
are also plotted for three of these cases. Cebeci's predictions are 
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Fig. 1 Comparison of A + calculated according to present theory, the 
correlation equation of Kays [1 ],and the data of Simpson (1968) 
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Fig. 2 Comparison of calculated and experimental results for the wall 
blowing data of Simpson [14] 

also based on an analytical extension of the Van Driest damping 
function, but the present method seems to give slightly better 
agreement with the experimental data. Fig. 3 shows similar com
parisons with Simpson's data [14] for two different suction rates, 
B = -0.0076 and -0.0024. Predicted velocity profiles have been 
compared with Simpson's measurements [14] for all the blowing 
rates indicated in Figs. 2 and 3, and the agreement has been 
found to be reasonably good. A representative velocity profile 
comparison is shown in Fig. 4 for B = 0.0078. 

Several comparisons were made with the compressible adiabat
ic turbulent boundary layer data reported by Squire [3] at Mach 
numbers 1.8, 2.5, and 3.6 and for blowing ratios ranging up to B 
= 0.0025. Comparisons of skin friction coefficients are given in 
Table 1. The agreement appears satisfactory considering the esti
mated uncertainty in Cf reported by the author ranging from 
±O.OOOI at B = 0 to ±0.0025 for B = 0.0036. This agreement 
tends to substantiate that the model for incompressible flow 
readily extends to compressible flow, at least up to Mach num
bers covered by the Squire [3] report, when the local density is 
used in the mixing length formulation, equation (7), and the 
damping function is evaluated using wall values for properties. 
Fig. 6 shows some representative velocity profile comparisons 
with the measurements of Squire [3]. The agreement is not quite 
as good as is usually observed for incompressible flows with com
parable blowing ratios. 
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Fig. 3 Comparison of calculated and experimental results for the wall 
suction data of Simpson [14] 
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Fig. 4 Comparison of calculated and experimental velocity profiles for 
the boundary layer with blow,ing measured by Simpson [14], 8 = 0.0078 

Comparisons were also made with the experimental data of 
McQuaid [2]. Agreement between most predicted boundary layer 
parameters, such as the momentum thickness and velocity pro
files, was quite good. Several investigators have remarked about 
the uncertainty in the skin friction coefficients obtained by 
McQuaid [9, 11, 14]. Fig. 6 shows a comparison of the predictions 
of the present method and the method of Brundrett, et ai., with 
the skin friction coefficient determined by McQuaid from the mo
mentum integral equation for B = 0.008. Although the predictions 
of the present method appear to agree a little better with the ex
perimental data than the Brundrett, et ai., predictions, both are 
within the error estimate of about 100 percent which is usually 
associated with this particular set of data. Simpson [14] discusses 
the probable reasons why McQuaid's skin friction results should 

Table 1 Comparison of calculated and experi
mental skin friction coefficients for the data of 
Squire [3] 

M, 
1.8 
1.8 
1.8 
2.5 
2.5 
2.5 
2.5 
3.6 

B X 10 3 

o 
1.3 
2.5 
o 
0.6 
1.3 
2.4 
1.2 

Cf X 103(exp) 
2.03 
140 
0.5 
1.67 
1.15 
l.0 
0.48 
0.56 

Cf X 10 3 (calc) 
2.02 
1.26 
0.629 
1.65 
1.15 
0.92 
0.476 
0.559 
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Fig. 5 Comparison of calculated and experimental results for the com
pressible boundary layer with blowing measured by Squire [3], B = 
0.0013 

be considered unreliable. Other skin friction comparisons with 
McQuaid's experiments are being omitted because of this experi
mental uncertainty. A comparison between predicted and mea
sured values of momentum thickness is also shown in Fig. 6 and 
the agreement is seen to be quite good. 

Fig. 7 presents comparisons with the data of Julien [19] for the 
turbulent boundary layer with blowing, B = 0.0058, in a favorable 
pressure gradient. Velocity profile agreement can be observed to 
be quite good. 

One of the most extensive series of experiments involving the 
transpired turbulent boundary layers with heat transfer was re
ported on by Moffat and Kays [20]. Fig. 8 shows comparisons of 
predicted Stanton numbers with their measurements for several 
flows with both blowing and suction. The general level of agree
ment between predictions and the experimental results is good 

o DATA OF MCQUAfD, B = 0.008 
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PREDICTION OF BRUNDRETT ET AL . 

£ 0.015 r-

y/n 

Fig. 7 Comparison of calculated and experimental results for the accel
erating boundary layer with blowing measured by Julien [19], B = 0.0058 
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Fig. 6 Comparison of calculated and experimental momentum thick
ness and skin friction values for the boundary layer with blowing mea
sured by McOuaid [2], Ue = 50.0, B = 0.008 
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Fig. 8 Comparison of calculated and experimental Stanton numbers for 
the transpired boundary layer with heat transfer measured by Moffat and 
Kays [20] 

considering the estimated uncertainty interval of ±0.0001 in St 
units for the measurements as reported by Moffat and Kays [20], 
This tends to substantiate that the range of applicability of the 
present analysis includes flows with heat transfer and leads to 
useful predictions for the Stanton number in flows with transpi
ration. 

Summary and Conclusions 
In the present analysis, we have attempted to reexamine exist

ing concepts which have been substantiated within limits by ex
periments, such as the law of the wall with blowing and the Van 
Driest damping function, to see if a transport model consistent 
with these existing concepts could be developed for predicting the 
development of the transpired turbulent boundary layer under a 
wide range of conditions. To this end, the damping function for 
the inner wall region, originally proposed by Van Driest, has been 
generalized to a form which is believed to be logically more suita
ble to flows for which the local shearing stress varies significant
ly very near the wall, as is observed particularly for transpired 
turbulent boundary layers. 
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This model, when used with t h e explici t ca lcu la t ion procedure 

previously developed by the author, has been shown to provide 

generally good ag reemen t with t he m e a s u r e d velocity profiles, 

skin friction coefficients, and S t a n t o n n u m b e r s from several in

vest igators over a wide range of blowing and suct ion ra t ios for 

both incompressible and compress ib le t u r b u l e n t flow. 
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The Heat Transfer and Drag 
Behavior of a Heated Circular 
Cylinder With Integral Heat-
Conducting Downstream Splitter 
Plate in Crossflow 
The heat transfer and drag behauior of a heated circular cylinder with integral heat con
ducting downstream splitter plate in transverse airflow has been experimentally investi
gated. The wind tunnel model was a thick-walled aluminum cylinder internally heated 
with electric resistance heaters and having a splitter plate whose length was varied for 
each test. Test results indicate the addition of the plate improved heat transfer charac
teristics with increased plate length, the most dramatic increase in Nusselt number 
being at the transition from a plate length of % the cylinder diameter to % the diameter 
at the higher speeds. Drag reduction was, in general, also evident with increased plate 
length. 

Introduct ion 

An understanding of the heat transfer and drag behavior of a 
circular cylinder in transverse airflow is necessary for the design 
of tube-type heat exchangers. Primarily, an increase in the heat 
transfer coefficient without a proportional unfavorable increase in 
drag is desirable. 

Fluid dynamic and heat transfer theory have been adequately 
established for the frontal region of the cylinder before separation 
where the boundary layer is predominantly laminar; but in the 
rear separated region of flow, solutions to the momentum and en
ergy equations become complex. For this reason much emphasis 
is placed on empirical observations in lieu of analytical solutions. 

The most commonly used correlation of data expressing the 
overall heat transfer coefficient from a single cylinder in crossflow 
in the range of Re = 40,000 to Re = 400,000 is (from reference [l]2): 

Nu = 0.0239(Re)0-805 (1) 

References [2-5], have shown that at lower Reynolds numbers a 

1 Presently, General Electric Company, Schenectady, N.Y. 
Contributed by the Heat Transfer Division for publication in the JOUR

NAL OF HEAT TRANSFER. Manuscript received by the Heat Transfer 
Division, November 10. 1972. Paper No. 74-HT-H. 

2 Numbers in brackets designate References at end of paper. 

minimum point in the heat transfer coefficient occurs at approxi
mately the point of separation with an increase in the heat trans
fer coefficient on the rear side, due to turbulent eddy motion. At 
higher Reynolds numbers, a minimum occurs at the transition 
from laminar to turbulent flow and again where the turbulent 
boundary layer separates. In each case, the minimum is followed 
by a rapid increase in heat transfer. 

With an interest in the wake of blunt bodies, Roshko [6] stud
ied the turbulent structure and velocity distribution in this region 
and showed that changes in the wake flow field dramatically 
changed the total drag coefficient. These changes included the 
placement of a splitter plate in the wake which affected the abili
ty of the forming eddies to "see" each other, thereby preventing 
regular oscillations in the wake. The most effective plate length 
was five cylinder diameters, while a shorter length altered the 
magnitude of drag reduction, as well as the amplitude and fre
quency of wake oscillations. Also, at the point where the splitter 
plate touched the cylinder, a large increase in pressure coefficient 
was noted. 

Seban and Levy [7] studied the effect of a very long splitter 
plate on the heat transfer from a cylinder in crossflow. This in
vestigation was also conducted with the plate separated from the 
cylinder by a small gap. It was found that the heat transfer was 
reduced significantly on the rear portion of the cylinder with the 
forward portion relatively unaffected. This was attributed to the 
fact that the splitter plate altered the downstream flow to a sepa-
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GUARD 

SECTION 

rated and reattached boundary layer enclosing a region of reverse 
flow between it and the surfaces of the plate and the cylinder. 

The object of the present work is to use the splitter plate as a 
heat transfer surface or fin by integrally attaching the splitter 
plate to the cylinder. In this way there will be a reduction in 
drag, and the heat transfer will increase due to the fin effect. The 
length of the splitter plate is varied to determine whether an op
timal condition exists. 

Exper imenta l Apparatus 
This investigation was conducted in the University of Pitts

burgh open circuit subsonic wind tunnel and utilized the associ
ated pyramidal strain gauge balance for drag measurement. The 
model spanned the 28 in. x 20 in. working section of the tunnel 
and was rigidly attached to the balance. Cloth seals prevented air 
leakage into the tunnel and insured unrestricted movement of the 
model at the tunnel wall-model interfaces. 

A cross section of the model is shown in Fig. 1. The model was 
machined from aluminum and assembled in three sections, the 
test section and two guard sections, each with a %6-in-thiek 
splitter plate welded to its rear center-line position. The test sec
tion consisted of an outer cylinder and inner grooved cylinder. 
The outer cylinder, 2% in. 01), was drilled at 16 different angular 
locations for the thermocouple junctions and the inner cylinder 
was correspondingly grooved to accommodate thermocouple leads. 
Thick-walled aluminum was used for the test section in order 
that large circumferential temperature gradients were minimized. 
As a precaution, a greater population of thermocouples was locat
ed in the 60-deg to 120-deg region where the greatest likelihood of 
gradients would occur, Fig. 2. 

A thermocouple was installed in each guard section at a posi
tion corresponding to one test section thermocouple for the pur
pose of matching guard section temperature with test section 
temperature to minimize the axial conduction losses from the test 
section. 

Each section was individually fitted with a hand-made electric 
resistance heater constructed from ceramic cores coiled with 
AWG 26 Nichrome wire and covered with electric resistor cement. 

The guard sections were insulated from the test section with 
asbestos transite spacers while balsa wood fixed with aluminum 
epoxy provided the insulation for the guard section-test section 
splitter plate interfaces. All thermocouple and heater leads were 
led through the heater cores to the outside of the tunnel. In the 
final assembly the centers of the heaters were filled with fiber-

8 ^ 

..4 
4 " 

[ -8-

—- —-——__ 
Fig. 2 

glass as further protection against radial heat leakage. 
All three heaters were individually powered by a variable volt

age supply connected to a-c line voltage. The test heater circuit 
included an a-c voltmeter and ammeter for the determination of 
the total power input to the test section. 

All thermocouples were taken from the same spool of AWG 30 
iron constantan glass on glass insulated wire and calibrated 
against an NBS standard thermometer. The thermocouple milli
volt output was measured by two precision potentiometers, one 
for free steam stagnation temperature readings and the other for 
the surface temperature-free stream stagnation temperature dif
ference. 

Total drag readings were determined directly from the digital 
readout of the pyramidal strain gauge balance. Free stream air
speed was measured by a Pitotstatic tube connected to a micro-
manometer. 

Exper imenta l Resu l t s 
The air property values used in the determination of the Reyn

olds numbers, Nusselt numbers, and drag coefficients were evalu
ated at the film temperature, which is the arithmetic average of 
the wall and free stream stagnation temperatures. The average 
Nusselt numbers were based on the cylinder area alone except 
where indicated. 

For this investigation, two basic parameters were studied for 
their influence on the heat transfer from the cylinder-splitter 
plate geometry in crossflow. These were the splitter plate length, 
and the Reynolds number based on cylinder diameter. The exper
iment was conducted such that at each plate length, local surface 
temperature data was acquired at several specified speeds and 
three particular power inputs. Fig. 3 is typical of the local tem
perature differences obtained at a given Reynolds number. It is 
seen that the thick-walled aluminum model successfully 
smoothed the circumferential gradients usually encountered with 
insulating or thin-walled models. The decrease in the tempera
ture difference for the longer plate lengths is clearly the result of 
the heat transfer through the splitter plate. In addition to reduc
ing rear temperature readings, the heat transfer through the plate 
reduced the forward temperatures as indicated by a shift in the 

• N o m e n c l a t u r e -

(';) = drag coefficient, dimensionless 
d = cylinder diameter, in. 
F = total drag force, lb; 

g, = gravitational constant, 32.2 lbm 

ft/lb,-sec2 

L = plate length, in. 

Nu = Nusselt number based on cylinder 
diameter, dimensionless 

Q " = heat rate per unit area (based on 
cylinder surface area), Btu/hr-ft2 

Re = Reynolds number based on cylinder 
diameter, dimensionless 

S = frontal area exposed to flow, ft2 

V = velocity, ft/sec 

X 

IT 

plate length, L/d, dimensionless 
kinematic viscosity, ft2/hr 
density, lbm /f t3 

temperature difference between 
cylinder surface and free stream 
stagnation temperature, deg F 
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magnitude of the curves for different plate lengths. 
Fig. 4 shows that the average Nusselt number, based on the 

cylinder surface area only, rises moderately with increased plate 
length at the lower Reynolds numbers; at the two highest Reyn
olds numbers, there is a "critical" plate length as indicated by a 
large increase in heat transfer coefficients. The critical plate 
length appears to be % cylinder diameters. It is apparent from 
these data that the increased heat transfer coefficient due to an 
increased surface area surpassed the influence of reduced rear 
turbulence or other resultant flow alterations, as indicated by the 
generally positive slope. In Fig. 5 the "average Nusselt number 
based on the cylinder and plate surface area" is defined as the 
Nusselt number multiplied by the ratio of the surface area of the 
cylinder to the total surface area of the cylinder and plate. The 
negative slopes indicate that the total surface area increase is 
greater than the increase in the heat transfer rate due to the in
creased area. 

Fig. 6 has the average Nusselt number, based on the cylinder 
surface area only, as a function of the Reynolds number of various 
splitter plate lengths to the diameter ratios, L/d. For L/d of zero 
and y3> the plots are essentially straight lines on the log-log plot, 
with the L/d of ^z indicating a slightly better heat transfer capa

bility, due to the increased area. The other L/d ratios starting 
with L/d of % show the same trend up to a Reynolds number of 
approximately 130.000, after which the heat transfer increases 
quite rapidly, possibly due to a change in the flow pattern behind 
the cylinder. 

The total heat transferred will be affected by the material used 
for the splitter plate, since the fin efficiency is a function of the 
thermal conductivity of the material. An estimate of the average 
heat transfer coefficient is also needed to compute the fin efficien
cy. Unfortunately, nothing has been published on heat transfer 
coefficients on plates behind cylinders. An approximation can be 
made from Seban's [8] work on heat transfer coefficients on sur
faces downstream of a step. His work shows that a value of 20 
Btu hr ft2 deg F would be a reasonable estimation for the average 
heat transfer coefficient. It will also be assumed that for each dif
ferent material, the root temperature would be approximately the 
same as shown in Fig. .'!. The following calculations are for a split
ter plate where x = L/d = % and for Re = 82.0(H). 

Percent of 
Material Fin. elf. 

0.58 
0.71 

aluminum 
copper 
steel (1.5 C) 
stainless steel 

(18 Or, 8Ni) 

0.32 

0.18 

total heat 

11.8 
14.3 
6.4 

3.7 

It is obvious that a splitter plate made of a material of high 
thermal conductivity will improve the heat transfer. 

Drag results are indicated in Fig. 7. The results indicate that 
the addition of a splitter plate reduces total drag and. as plate 
length is increased, the total drag is decreased. The clean cylinder 
results were found to compare very well with published work. 

It was expected that the addition of a splitter plate would alter 
the amplitude and frequency of vibration of the cylinder by af
fecting the shedding of vortexes in the wake region. Although not 
directly measured in this investigation, the amplitude of vibra
tion was observed to increase with decreasing plate length, as ob
served by the digital drag readout. In addition to affecting the 
vortex shedding, the splitter plate invariably stiffens the tube 
structurally thereby minimizing the problem of flow induced vi
bration. 

Dimensioniess Plate Length, X = L/d 

Fig. 5 
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would thus tend to verify our experimental data. 
It appears that the available data for circular cylinders normal 

to an airstream for Reynolds numbers greater than 49,000 are 
questionable, and that an effort should be made to resolve the 
problem. 

S u m m a r y 

The investigation was performed under the following condi
tions: 

Plate length 0-2% d 
Free stream stagnation temperature, deg F 78-87 
Barometeric pressure, in. of Hg 28.6-29.9 
Free stream velocity, ft/sec 46-194 
Reynolds number 49,000-227,000 
Temperature difference, deg F 

(wall temp-free stream stagnation temp.) 11-160 
Average Nusselt number 135-610 

In Fig. 8 the heat transfer data from a cylinder without splitter 
plate are compared to published data. For the corresponding 
Reynolds number range of 49,000 to 227,000, Hilpert's 11] data 
were taken from test cylinders of 44, 90, and 150 mm dia, and 
500, 500, and 142 mm length, respectively. His cylinders were 
placed lengthwise horizontally in the free jet. The flow pattern is 
quite different than our case, which had the 2%-in-dia cylinder 
horizontally wall to w:all in the 28 in. wide by 20 in. high working 
section of the wind tunnel. The turbulence level of the tunnel was 
well below 1 percent, and our data have been corrected for block
age effects. 

Schmidt and Wenner's ]4| data were taken using a flow nozzle 
which issued a narrow jet of air. similar to Hilpert's setup. Analy
sis of their data indicates that a cylinder diameter effect might be 
present in their data. 

Giedt's [3] data were taken from a test section consisting of a 
nichrome ribbon wound around a lucite cylinder. Although the 
ribbon was only 0.002 in. in thickness, it is possible that the rib
bon was not completely in contact with the lucite cylinder and 
this produced an irregular surface causing higher heat transfer. 
Also the fact that the heated surface was not isothermal, and the 
fact that an average Nusselt number was taken from the locally 
measured Nusselt numbers could cause quite a deviation from 
average Nusselt numbers taken from essentially isothermal cylin
ders. 

The correlation of A, Zukauskas [9] shows that our data are 
only about 6 percent lower. It is also seen that the date of Stasi-
ulevicius and Samoska (which is shown in Zukauskas' correla
tion) lies at least 10 percent lower than this correlation, and 

C o n c l u s i o n s 

In general, these conclusions may be made: 
1 The addition of a downstream integral heat-conducting 

splitter plate to a heated cylinder in transverse airflow will, in gen
eral, improve the overall heat, transfer coefficient, based on the 
area of the cylindrical surface. 

2 The most dramatic increase in Nusselt number occurs with 
a splitter plate length % the cylinder diameter. 

3 The addition of a downstream integral splitter plate to a 
cylinder, in general, decreases total drag. 

4 Even the shortest plate length (y3 d) reduces drag apprecia
bly with improved effects with increased length. 

5 The increase of heat transferred due to increased surface 
area for flow past the cylinder-splitter plate geometry surpasses 
the decrease in heat transferred due to reduced rear turbulence or 
other resultant flow alterations. 

6 A thick-walled cylinder of high thermal conductivity will ef
fectively eliminate large circumferential temperature gradients on 
the outer surface of the cylinder for the transverse flow of air 
across the cylinder. 
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Thermal Analysis of Laminar Fluid 
Film Under Side Cyclic Motion 
An analytical study is presented for a constant-thickness incompressible laminar one-
dimensional fluid film undergoing cyclic side motion. The fluid film is bounded by a sta
tionary and a cyclically-moving wall. The heat flux is calculated at both the stationary 
and moving boundaries. Formulas are presented for the frictional resistance and power 
dissipation at the moving wall. Application is made to the varying-thickness fluid film 
between an eccentric round shaft with reciprocating axial motion and its stationary cy
lindrical housing. In the analysis, quantities assumed constant are the pressure along the 
edges of the fluid film, its properties, and the temperature along each of the two walls 
bounding the fluid. The lateral dimensions of the fluid film are assumed large compared 
to its thickness such that end effects can be neglected. 

Introduct ion 

The basic problem considered is that of one-dimensional con
stant-property laminar flow of an incompressible fluid between 
two parallel walls. As shown in Fig. 1(a), the constant-thickness 
fluid film is bounded by a stationary and a cyclically-moving 
wall. The width and length are assumed large compared to the 

fluid film thickness. Y*, such that end effects can be neglected. 
The ratio of length to film thickness for negligible end effects 
would be dependent on the fluid temperature entering the gap 
and on the wall temperatures bounding the fluid film. The pres
sure is assumed given as constant and equal along all edges of the 
fluid film. The stationary wall is assumed constant at tempera
ture Ts, and the moving wall constant at temperature Tm. 

Application is made of the basic solution described in the fore
going to the varying-thickness fluid film between an eccentri
cally-positioned round shaft with axial reciprocating motion and 
its parallel stationary cylindrical housing. The diametral clear
ance between shaft and cylinder is limited to be small compared 
to the shaft diameter such that a negligible film curvature re
sults. Fig. Kb) shows an end view of the stationary cylinder en
closing the cyclically-moving shaft. Calculations are presented for 
the heat transfer at both the stationary and moving boundaries, 
and for the frictional force and power dissipation at the moving 
boundary. 

With the assumptions made, the problem described in the fore
going finds application in a variety of heat exchangers. For exam
ple, cooling of the piston in the drive of a gas compressor can be 
achieved through a cylindrical annulus of oil situated close to the 

Contributed by the Heat Transfer Division for publication in the JOUR
NAL OF HEAT TRANSFER. Manuscript received by the Heat Transfer 
Division, May 29, 1973. Paper No. 74-HT-G. 

compression seal. A flowing coolant could surround the oil annu
lus which can simply be splattered in place such that it fills at all 
times the cylindrical gap. Another application is found in heat 
transfer through the air film between moving and stationary 
parts of a linear reciprocating electric motor. In the latter case 
the fluid is compressible. However, if the gap is properly de
signed, a low temperature drop occurs across the fluid film which 
renders the compressibility of the fluid film unimportant. Other 
applications are encountered in friction and thermal analysis of 
fluid film bearings undergoing reciprocating linear motion. 

The solution sought is a regular-parameter series expansion. 
The perturbation parameter being a form of Reynolds number, 
represents qualitatively the ratio of fluid inertia to viscous forces. 
The zeroth-order terms in the solution neglect completely motion 
and thermal inertia. Four subsequent correction terms are pre
sented for the time-average heat transfer at the walls and for the 
friction power dissipation at the moving wall. Three correction 
terms are presented for the instantaneous temperature distribu
tion and heat transfer at the walls. 

Analys i s 
Parallel Surfaces. Geometrically the basic problem under con

sideration has been shown in Fig. 1(a). The wall temperatures are 
given to be uniform, the pressure is equal at all edges of the con
stant-thickness fluid film, and end effects are neglected. Hence, 
the velocity, U, and the temperature distribution, T, are only 
functions of the time, t, and of the normal distance, Y, from the 
stationary wall. The velocity of the reciprocating plate will be as
sumed sinusoidal in time with amplitude, U*. With the assump
tions discussed in the foregoing, the governing equations of mo
tion and energy balance for incompressible fluids are satisfied by 
a constant pressure and require 
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77 = M ~ r , U{Y - 0./) = 0 , l / (F = F*,/) = U* s in a)/ 

*? IF 
,'dl) 

".(--) , r (F=o, / )=r s , r(r=r*,/): 

( i ) 

T „ 

In the foregoing equations, the fluid properties introduced are: 
density, p, viscosity, p, specific heat, C, and thermal conductivi
ty, k. The frequency of motion of the moving wall has been denot
ed as in. The exact solution to the velocity distribution in equa
tion (1) and the frictional force at the walls is presented in Land
au and Lifshitz [l].1 An alternative solution will be derived here 
applicable only for small values of Reynolds number. Emphasis 
will be placed on the solution to the energy equation for small 
Reynolds number. In the Appendix, the time-average energy 
equation is considered and its approximate solution is directly 
derived. For the reader interested in thermal solutions for large 
Reynolds number in laminar flows it is recommended that the 
exact velocity distribution from [1] be substituted in equation 
(Al) in order to calculate the exact time-average temperature 
distribution. 

Introduce the following dimensionless quantities: position, y, 
time, T, velocity, u, temperature, I), characteristic Reynolds num
ber, o, Prandtl number, Xi, and Brinkman number, X2. The 
boundary-value problem in dimensionless form is then obtained 
from equations (1) as 

5- = 0 , tl( V = 0, T) = 0 , /(( V = 1, 7") = SUIT 

— j - = X,6 — - X 2 —- , 0 V = O , T ) = O , y -
dy OT dv 

1,T) 

(2) 

Assume perturbation series solutions in powers of 6: 

«( V,T;6) = TJ 6'/(,-( V,T) 

0(V,T;XUX2,6) = £ S^ j fv .T; X1; X2) (3) 

Substitution of equations (3) into (2) yields, after coefficients of 
equal powers of (5 are equated: 

, I 0 for i = 0 

dv' 
for i a 1 

' s i n r for i = 0 

« , (y = 0, T ) = 0 , «,.(v = 1, T ) = { (4) 
0 for i > 1 

X 2 ( ^ ) for i = 0 
dy 

i + fl - ( - ! ) ' 1 / 2 

d\'' 
= / x , ^ - 2 X 2 £ y « , _ i OH ,. 

, 1 + ( - 1 ) ' , 9" i /2N 2
 f • ^ 1 

, 2 — _ ( _ ^ _ ) f o r i > i 

j 1 for / = 0 

ef(.v = 0 , T ) = 0 , e i ( ; v = l , r ) = l 0 £ o r , . £ l 

The first five terms of the velocity distribution satisfying equa
tions (4) are 

u0 = y s i n r 

y " ) ' 3 

i_,_l 
u2 - i c l i f t ) 36>l(K y 3 + T d > ' 5 ) s i n T 

• Numbers in brackets designated References at end of paper. 

1 , 3 1 
" 3 ~ 7 2 0 ( 2 1 V y> + y* - =—) COST 

•Nomenclature-

M = fluid viscosity 
f> = fluid density 
a> = frequency of motion 
C = fluid specific heat 
E - power dissipation per unit length 

for eccentric fluid annulus be
tween shaft and cylindrical 
housing 

F = friction force per unit length at 
moving wall for eccentric 
fluid annulus between shaft 
and cylindrical housing 

H,„, Hs = respective radial heat transfer 
per unit length through mov
ing shaft and stationary cylin
drical housing 

k = fluid thermal conductivity 
P = power dissipation per unit area 

Qm.Qs = respective heat fluxes in ~Y 
direction through moving and 
stationary walls 

R = shaft radius 
ft, = radial clearance between shaft 

and cylindrical housing 
•S = friction stress at moving wall 
t = time 

T = fluid temperature 

T,n,Ts = respective temperatures of mov
ing and stationary walls 

U = fluid velocity 
U* = velocity amplitude of moving 

wall 
Y = normal distance from stationary 

wall 
y* = normal distance between sta

tionary and moving walls 
Ymin* = minimum film thickness be

tween eccentric shaft and 
cylindrical housing 

Dimensionless quantities 

S = pu V*2/M, SC - pi»Rc
2/p., characteris

tic Reynolds numbers 
(= 1 - v*m i n /ft c 

0 = (T-Ts)/(Tm -Ts) 
Si = coefficient of 5' in series solution 

for 9 
Xi = pC/k, Prandtl number 
\2=pU*2/(k{Tm - Ts)), Brinkman 

number 
a = Y*S/(pU*), <TC = RcS/(pU*) 
T ~ Ult 

<p = angle measured from position of 
minimum film thickness for eccen

tric fluid annulus between shaft 
and cylindrical housing 

e = RcE/(2pRU*2) 
f = RcF/(2nRU*) 

hm = RcHm/(2Rk(Tm - Ts» 
hs = RcHs/(2Rk(Tn -Ts)) 
p = Y*P/(Mt/*2) 

qm = Y*Qm/(k(Tm - Ts)), qmc = RcQm/ 
(k(Tm - Ts)) 

qs=Y*Qs/(k(Tm - Ts)), qsc = RcQs/ 
(k(Tm - Ts)) 

u = U/U* 
ui = coefficient of &' in series solution for u 
y= Y/Y*,yc = Y/RL 

Time-average quantities 

1 r2" 1 -u 

9 = 7T~ f 9dT , e = -~— I edr, /.' 

1 2* 1 -2* 
= ^ / h^d7> hs= ^J_ hsdl 

277 

^ ~ 2TT 

2TT-

1 - 2 ' 

P= 5 7 / PdT • ±n,= ^:f Qmdr, 

(Is 

0 

1 -2 

2 T I -

2TT 
/ <lsdr 
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MOVING SURFACE 

FLUID FILM 

STATIONARY 
CYLINDER 

FLUID FILM 

STATIONARY SURFACE 

AXIALLY 
RECIPROCATING 
SHAFT-

Fig. 1(a) Constant-thickness fluid film bounded by stationary and cycli
cally moving walls; (b) varying-thickness fluid film bounded by stationary 
cylindrical housing and axiaily reciprocating shaft 

To obtain more terms in the solution to the temperature distribu
tion involves a considerable amount of algebraic work. 

The frictional stress and power dissipation per unit area at the 
moving wall are, respectively, given by .S* = n (iiU/it Y)Y - v*and 
P = SU* sin wt. After introducing dimensionless quantities, these 
become a = (<ju/<n')v»i and p = a sin r, respectively. In view of 
equations (3) and (5), one obtains 

n2 84 

.) s in T + ( 1 + 45 " 4725 

a ( 1 2 
62 + , . .) cos T (7) 

3 ' " 315 
At the stationary and moving walls, the heat fluxes (in the -Y 
direction) are, respectively, given by Qs = k(iiT/(iY)Y -o and Qm 

= k(iiT/iiY)y -Yin. After introducing dimensionless quantities, 
these become qs = (HHjby)y,a and q,„ = (<iW/<»y).y_-i, respectively. 
In view of equations (3) and (6), one obtains 

6 A, 
1 + 2At 

24 
SinT COST 

+ 6' 
1 2 0 ' + 6 S T ^ s l n 

+ 63 A, 10 
18(T21 

= 1 

1_1 
42 A l + 

• 6A, 

11 17 
2 8 ' 

SinT COST + 

2A, 
(8) 

2 " ' ""2 24 

*2 h rS + 3At
2 

120 

^3 ^ , ( 1 + 
A, 7 7 

SinT COST 

17 
6 3 0 ' " ' 12 ' M T 48 A l T "g A,3 ) s inT C O S T + 

The time-average of p, qSl and qm are given, respectively, by 

4725 ; 
, 1 / , 6 2 

P = T d + 45 o(eij 

1 ,127 31 3 7 , 1 , 1 , , . 
"< = 4320 ( 1 4 0 - v ~ 2 i > ! + 10-V 7-V + 8 4 * > S m T ( 5 ) 

From equations (4) and (5), the first four terms of the tempera
ture distribution are given by 

0, o = .v[l + - ^ ( 1 - v ) sin2T] 

„ A2 s i n r COST 1 + 2A; y 
1 - 6 y{ 4 ~ 2 " A1V< + 2 , 1 + 2 A1 v 3 \ 

24 
> I { C O S 2 T ( 1 ( 1 + ^ + X I 2 ) „ ^ X I L±Mxy* 

+ ^ ( l + - ^ ) y 3 + ^ / - ( l + 

- s i n " T | - ( l + - J - + A j 2 ) - — v " A j 

*1_)Z-1 
3 ; 5 ' 

1 + 2A, , 
1 . ^ 

Ai 
2 

+ id + ̂ )y3 + 4Kv4 -(1 + ̂  + A,2) £• ]} (6) 

180 J 
e3 = Tak? SinT COST |( — + —A! 

10 n 
l 2 1 + 4 2 ' 

2 

11 
168 

15 

^ S ^ 3 > 
2i.V ~ X,(l + ^ + A , V + (1 + A,)y3 + - ^ (1 + 2A1)>>4 

~{f2+ A,(l + Al)t ,8_Y-v6+~(8 + 

4A, + A,2 + 2A,3)y7] 

1 + 
4 

& 1 •6 2 ^ 
90 

0(6e) 

A, 

(9) 

+ 0(6B 

4 90 9450 
where the terms of 0(54) in qs and qm were obtained from the 
Appendix. Note that equations (9) satisfy the relation A2p = qs ~ 
qm, which can be shown to be the overall energy balance. 

Eccentric Annulus. The solution presented in the foregoing for 
constant-thickness fluid film can be applied with modification to 
problems with varying film thickness in the direction normal to 
fluid flow. Consider the case of an eccentric but parallel round 
shaft in its cylindrical housing. The shaft moves axiaily with re
ciprocating motion. In order to neglect the fluid film curvature, 
the radial clearance, R,, between shaft and cylinder bore will be 
assumed small compared to the shaft radius K (i.e., RC/R<<1). 
Let the minimum fluid film thickness be denoted by V'*mlll, then 
one obtains [2] for fic/Ji«l: 

Y* 
Y* = Rc(l - e cos 0 ) , e = 1 

Rr 
(10) 

where, as shown in Fig. Kb), the angle <>> is measured from the 
position of minimum film thickness. The eccentric annulus re
sults will be obtained from the parallel wall equations through 
substitution of equations (10). 

Using R, as the characteristic length, intioduce the following 
dimensionless quantities: position, y,., characteristic Reynolds 
number, <V, frictional stress at the moving wall, <r,., heat fluxes at 
the stationary wall, qs,, and at the moving wall, qm,. 

Calculated on a unit length basis, the frictional force at the 
moving wall, F, the corresponding power dissipation, E, the radial 
heat transfer through the stationary wall. Hs, and through the 
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moving wall, Hm are all given by 

F = 2R f S deb , E = FU* s in u>t 
o (ID 

H,= 2Rf QHd(b. Hm = 2RJ Qmdcp 
o o 

After dimensionless quantities are introduced, these quantities 
become, respectively 

/ = / vcd<b , e = f s in T 

h s =• / qx deb , hm = J <7mc rfd> 

(12) 

Combine equations (7), (10), and (12) to obtain for the dimen
sionless 1'rictional force: 

/ = TT s i n r 

4725 

«2 45 r € ' ) 6 c 

(1 
21 , 

2 M 
105 .__£ S £ ^ + 

+ | cos T [ 6 C - A ( 1 + 5 e 2 + ^ e 4 ) 6 c
3 + . . . ] (13) 

Combine equations (8), (10), and (12) to obtain for the dimen
sionless heat transfer through the stationary and moving walls: 

IK 
1 - £2 

(1 5in2 T) - 6CJTA; 
1 + 2x, 

24 
S1I1T COST 

The time-average of e, ha, and h,n are given, respectively, by 

2 1 VI 

1 
45 (1 

21 

;(2)5C 

105 35 
4 7 2 5 ' 

^ £ 6 ) 6 C
4 ] + 0 ( 6 C

6 ) 
16 

1 + A,/4 
h = TT — ^ = = 4 = = 
— V 1 - £2 

1 
2 

0(6C
6) 

1 - e2 90v 
3 £2)6C

2 + 

94501 T £ ? + ir6'1 + f f £ 6 ) 5< 4 1 + 0(5-G) (15) 

where the terms of 0(f)4} in hs and hm were obtained from equa
tions (9). The value of the parameter A2 resulting in no net heat 
transfer from the moving surface can be obtained from the last of 
equations (15) as 

4 / { l + £gV"l ~£2 6 / ( 1 

- 105 ( 1 f T£ + 

35 

105 , 

+ ^ £ 6 ) U + 0(6C
6) (16) 

A A 3 
6c2?r 120*-1 + if + ^ ^ + y^Hcos2 T _ s i n 2 T ) 

, , A2 .20 11 
21 A l 

11 
14 

15 
8 4 ^ + ^ - ^ 3 K l + 5 e 2 + ^ e 4 ) 

If A2 exceeds this value, then net heat is transferred from the 
fluid film into the moving wall, although its temperature exceeds 
that of the stationary surface. Note that equations (15) satisfy 
the relation A2fi. = hs ~ Am, which can be shown to be the overall 
energy balance. 

f(l 

- 6 / J T 
1 2 0 u 

6 3 0 ' 

- , 2 ^ 0rTrA, 

x s i n r COST 

1 - 2A, 

(14) 

M 
24 S i n T COST 

3 + o A i" 0 
1— P O C ' T 

7 

12 Xl 

3 

48 

COS 2 T + (1 - A,2) s in2T] 

+ ^ A , 3 ) ( l + 5e2 + 
8 

15 4) 

X S i n T COST 

.2 .4 .6 

DIMENSIONLESS P O S I T I O N , y = X 
Y * 

F ig. 2 Terms in series solution for dimensionless velocity distr ibut ion for 
constant th ickness fluid f i lm bounded by stationary and cycl ical ly moving 
walls 

Discuss ion of Solut ion 

Paral lel Surfaces. Fig. 2 shows the terms, u, in the dimension
less velocity distribution, equations (5). The first term, uo, ne
glects completely fluid motion inertia and is of order one. Each 
successive term decreases in order of magnitude by a factor of 
ten. Rapid convergence will occur for moderate values of the 
characteristic Reynolds number, f>. For y > 0.7 the values of 
\QPu-zlcos T and 104/sin T agree sufficiently close to warrant no 
graphical distinction. 

From equations (6), the coefficients lit of powers of the charac
teristic Reynolds number, 6', are found to depend on the Prandtl 
number. Ai, and on the Brinkman number, A2. Values of A2 much 
less than one result in negligible heat dissipation with almost 
pure thermal conduction throughout the fluid film thickness. 
Hence, Oo becomes very accurate for A2 « I. For moderate values 
of Ai and <*>, the series solution for 0 seems rapidly convergent; 
however, it becomes divergent for Ai 3> 1 and & S> 1. It should be 
noted that gases have Prandtl numbers generally of order one 
while liquids can have much larger values. For example, water at 
27 deg C has A] s 5.9 while a light oil would have Aj s? 570. Appli
cation of the series solution for large. Prandtl number is possible 
only at a reduced value of Reynolds number. 

Equations (9) are the time average-solutions for the dimension
less frictional power dissipation, p, the dimensionless heat flux at 
the stationary surface, qs, and at the moving surface, qm. These 
equations are the most important results of the analysis on paral
lel surfaces. Note that the Prandtl number does not enter into the 
time-average thermal solutions. The value of qs is found to be in
dependent of the Reynolds number at least up to and including 
Of/)4), and the solution for qm is only a function of even powers of 
0. It should be emphasized that if only time-average thermal re
sults are desired, the method described in the Appendix using the 
averaged energy equation should be used for simplicity. 

Eccentric Annulus. Equations (13) through (15) were obtained 
through application of the basic solution for constant-thickness 
fluid film to the circumferential fluid annulus between an axially 
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UJliJ 
5 5 

I 
INCLUDES ONE TERM IN EQ. (15 ) j 
INCLUDES TWO TERMS IN EQ. (15) f 
INCLUDES ALL THREE TERMS 
IN E Q . ( 1 5 ) 

ECCENTRICITY RATIO , e -- | - T m i n 

Fig. 3 Dimensionless power dissipation for eccentric film annulus 
bounded by stationary cylindrical housing and axially reciprocating shaft 

reciprocating cylindrical shaft and its stationary cylindrical hous
ing. Rapidly convergent series solutions are found for nearly con
centric annuli (i.e., f « 1). A slower rate of convergence is associ
ated with intermediate values of eccentricity ratio. As < ap
proaches unity, the zeroth-order solutions for /, hs, and hm become 
infinite while the higher-order terms remain finite and conver
gent. Hence, the relative effect of fluid inertia becomes negligible 
for a nearly perfectly eccentric annulus. 

Equations (15) represent the time averages of dimensionless 
shaft frictional power, e, and dimensionless heat transfer at the 
stationary cylindrical housing, hs, and at the axially reciprocating 
shaft surface, hm. These equations are simple in form and depen
dent only on the Brinkman number, X2, cm the Reynolds number, 
be, and on the shaft eccentricity ratio, t. Fig. 3 shows curves of e 
versus e for h,- = 1, 2, and 3. The solutions for 6<- = 1 including 
two and three terms in the first of equations (15) were so close in 
value to warrant no graphical distinction. For o, = 2 the series 
solution for e is still rapidly convergent with the second-order so
lution showing only a slight deviation from the first-order solu
tion. However, note that the first correction on the zeroth-order 
term has significant effect for bc = 2. For 6,- - 3, the series solu
tion for^ seems still rapidly convergent as long as small values of 
t are considered (i.e., t < 0.4). A slowly convergent trend is visi
ble for larger values of < (i.e., t = —0.8). As i approaches one, the 
zeroth-order term in the series for e becomes infinite and the se
ries corrections assume relatively negligible values. 

Fig. 4 shows values of hm plotted versus eccentricity ratio, t, for 
X2 = 0.5, 1, 2, and 3 with values of 1 and 2 assigned to the Reyn
olds number, i)c. As expected the zeroth-order solution for hm is 
quite accurate for the lower values of X2. The perturbation correc
tions in the series solution for hm become important as A2 and/or 
he increase in value. For A2 = 0.5 and/or <5, = 1, the solutions 
shown for hm including two and three terms agree closely and 
warrant no graphical distinction. 

Applicat ion of Solut ion 
Parallel Surfaces. In heat exchangers where heat must pass 

through a reciprocating fluid film with parallel surfaces of the 
type considered here, the important thermal quantities are the 
heat flux extracted from the reciprocating surface, Qm, and the 

ECCENTRICITY RATIO, t - I -

Fig. 4 Dimensionless radial heat transfer through axially reciprocating 
shaft surface enclosed by eccentric fluid annulus and stationary cylindri
cal housing 

heat flux transmitted to the stationary surface, Qs- It is usually 
the time average of these heat fluxes which are of practical inter
est. Denote these average values, respectively, as Qm and Qs- The 
quantity Qm is the effective heat removal from the system in unit 
area of the fluid film. The quantity Qs is the heat removal in unit 
area the cooler must absorb. Only if the energy dissipation within 
the fluid film becomes negligible (e.g., if the Brinkman number, 
X2, approaches zero), will Q,„ and Qs approach each other in 
value. The solutions presented in the foregoing apply only in the 
small and moderate Reynolds number, b, range. Hence, from 
equations (9), one concludes that fluid motion inertia reduces the 
system heat removal, Qm, and leaves unaffected (at least up to 
and including 0(64)) the heat flux transmitted to the cooler, Qs. 
The value of Brinkman number resulting in no heat removal can 
be obtained by setting equal to zero the last of equations (9). For 
Qm = 0, the value of X2 reaches its maximum value of 4 when b = 
0. 

Consider the effect of the fluid film thickness on the system 
heat removal per unit area, Qm, by writing the last of equations 
(9) in dimensional form as 

_. <?„ (1-h.) ± "- "'•' 2 

' 4 ' Y* k(Tn T 90 v ; 

X2 

9450 

l-i-

( ^ ) Y* + 0(66) (17) 

Consider a fluid film of water at 27 deg C, yielding the following 
property values [3]: k = 0.611 (10)5 dyne/(sec deg C). p = 0.996 
gm/cm3 and n = 0.860 (10)~2 dyne sec/cm2. Let the maximum 
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CHARACTERISTIC REYNOLDS NO., 8 = 

.5 1 2 3 4 

pwY* 

5 6 

CHARACTERISTIC REYNOLDS NO.,8c = 

INCLUDES ONE TERM IN EQN.08) 

INCLUDES TWO OR ALL THREE 
TERMS IN EON. ( 18) 

WATER AT 27°C 

u * = I 0 4 cm/sec, o> • 

Tm - T , • IO'C 

Fig. 5 Time-
fi lm th ickness 

.005 .01 .015 

FLUID FILM THICKNESS, 

average heat flux at moving wall as funct ion of the fluid 
for f i lm bounded by parallel walls 

a. < 
. rr— 

Q. u- *-

w X £ 

1 1 
EQN. 

INCLUDES ALL THREE TERMS 
EON. (19) 

LIGHT LUBRICATING OIL AT 27"C 

U*= I 0 3 cm/s«c, w - I 0 2 rod/sec 
€ =.5 
H m =0 

y / 

i i i 

I 

(19) 
IN 

// 
// 

// 

l 

/ / 
1 

1 

/ / 
/ / 
'/ 

i 

.02 .04 .06 

RAOIAL CLEARANCE, R r (cm) 

Fig. 6 Di f ference between shaft surface and cyl indr ical housing surface 
temperature as funct ion of the radial c learance for an insulated shaft 

value of the reciprocating wall velocity be U = 104 cm/sec at a 
frequency cc = 102 rad/sec. Assign a value to the difference in 
wall temperatures Tm - Ts = 10 deg C. The resulting Brinkman 
number is X2 = 1.41. and the value of the parameter pu/n = 1.16 
(10)4 cm 2. Substitute these values into equation (17) and con
vert the units of Q,„ to watt/cm2 , yielding 

0.0396 
•0.129(100}'*)3 + 0.165(10)"' (100K*)7 + 

(18) 

where the unit of cm must be used for Y*. Fig. 5 shows equation 
(18) plotted with the fluid film thickness, Y*, or the Reynolds 
number as the independent variable. The solid line in the figure 
neglects completely fluid motion inertia and represents the first 
term in the foregoing equation. The dashed line in the figure in
cludes the first two terms in the R.H.S. of equation (18); fluid in
ertia is included with a single correction term. The curve ob
tained if the third term in the R.H.S. of equation (18) is also in
cluded agrees closely and cannot be distinguished graphically 
from the results including the first two terms in the equation. Fig. 
5 shows the great significance of fluid inertia under certain condi
tions. Note that fluid inertia has caused Qm to vanish at a rather 
low value of Reynolds number (i.e., h s 6.4). For larger Reynolds 
number, Q,„ assumes negative values. Equation (18) and Fig. 5 
show the importance of the first correction term including fluid 
flow inertia and the rapid convergence of higher-order terms, 
which property is typical of the perturbation expansions present
ed in the manuscript. 

Eccentric Annulus. Consider an eccentric shaft with axial re
ciprocating motion inside its parallel cylindrical stationary hous
ing. Assume the shaft surface to be insulated, H,„ = 0 (where Hm 

denotes the time average of Hm), and at a uniform temperature, 
Tm- The cylindrical housing surface transmits a time-average 
heat per unit length, Hm, and is maintained at a uniform tem
perature, 7',-. Under these conditions there will occur the maxi
mum temperature difference possible between shaft surface and 
cylindrical housing surface. It is of practical importance, because 
in many applications the bearing housing can be cooled much 
more effectively than the reciprocating shaft. In any case, the so
lution to be obtained yields the worst case for thermal expansions 
which reduce the radial thickness of the fluid annulus. In order 

for the solution presented here to be of practical significance, the 
length of the bearing or bushing must be considerably larger than 
the stroking motion: otherwise, end effects can become important. 
Let the velocity amplitude U* = 103 cm/sec at a frequency w = 
102 rad/sec. Consider a light lubricating oil at 27 deg C yielding 
[3]: M = 0.413 dyne sec/cm2, ,, = 0.910 gm/cm3 and k = 1.33 (10)" 
dyne/(sec deg C). Assume a value of eccentricity ratio t = 0.5 
and substitute into equation (16) to obtain 

T„ - Ts = 7.76 + 1.99(10/tc)4 - 0.299(10flc)8 + . . . (19) 

where Tm and Ts are in deg C, and the radial clearance, R,:, is in 
cm. Fig. 6 shows the effect of the radial clearance on Tm ~ TK. 
The value of this temperature difference would be 7.76 if fluid 
motion inertia were neglected. Hence, the first correction term in
cluding inertia in the solution is important while the second cor
rection term, for the conditions given, has a much smaller contri
bution. Note from equation (19) that the two correction terms 
presented are of opposite sign, which is typical of the perturba
tion series presented in the manuscript. This change in sign of 
successive correction terms should exist as well for higher-order 
terms. Hence, the exact solution in Fig. 6 should lie somewhere 
between the solid and dashed lines shown, since the series seems 
convergent for the range of Rc considered. 
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A P P E N D I X 
If only the time average qualities are desired, as presented in 

equations (16) and (24), it is simpler to start with the averaged 
form of the energy equation: 

, 3 M , 2 

where the time-average temperature distribution, 9, has been in
troduced. The solution for u in equations (5) is 

n(y, T; 5) = / ( y ; 6) s in T + g(y; 6) cos T (A2) 

4 = -•&[ 
'dV 27Tn 

rfT (Al) 
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where the first few terms to the series solutions for / and g can be 
obtained from equations (6). Combine equations (Al) and (A2) to 
obtain 

}2fl \ _ At I A„ 2 a'l 
2 dv ay 

(A3) 

Integrating and satisfying the temperature boundary conditions 
in equations (3), one obtains 

^ 0 2) + 2: 
360 

26 

eV-.v") 

8640 v 105- 15 J 105 
V10) + 0(66) (A4) 

Differentiation of equation (A4) yields the time-average heat flux 
which can be evaluated at y = 0 and 1 to obtain the last two 
equations in (16). 
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An Analysis of Heat Transfer in 

Turbulent Pipe Flow With Variable 

Properties 
A new approach to the analysis of variable property heat transfer for turbulent flow is 
presented. The mathematical model developed herein is based on the principle of surface 
renewal and involves the use of an integral technique. The proposed expressions for heat 
transfer account for both variable conductivity and variable viscosity and are applicable 
to heating and cooling. The theoretical predictions are in good agreement with available 
experimental heat transfer data for moderate Prandtl number fluids. 

I n t r o d u c t i o n 

Various theoretical analyses have been proposed for variable 
property heat transfer to fluids associated with laminar flow in 
the boundary layer and thermal entrance region [1, 2, 3].1 These 
analyses have proven to be adequately representative of available 
experimental data. However, less success has been realized in the 
modeling of turbulent heat transfer for variable property flow. 
Aside from semiempirical analyses [4, 5] which are based on the 
eddy diffusivity concept, studies of this complex problem have 
been limited to empirical correlations coupled with dimensional 
analysis. Although Deissler's [4] analysis yields predictions for the 
mean Nusselt number which qualitatively describe the variable 
property effect on heat transfer, these results tend to overpreciict 
the available experimental data [6J. 

A different approach to the analysis of variable property heat 
transfer for turbulent flow of liquids is now-proposed which is 
based on the surface renewal principle. This concept is in basic 
accord with recent experimental studies which utilize: (a) flow 
visualization techniques [7], and (bj flush mounted hot film 
probes [8, 9]. These studies demonstrate the active nature of the 
wall region. The proposed model stipulates that eddies intermit
tently move from the turbulent core to the wall region. In addi
tion, one-dimensional molecular transfer is assumed to govern 
during the residency of eddies within the vicinity of the wall. This 
type of model, known as the surface renewal and penetration 
model, was first proposed by Danckwerts [10] in connection with 
turbulent mass transfer for a fluid-fluid interface. The model has 
been subsequently adapted to a broad range of turbulent trans
port processes for solid-fluid interfaces [11-15]. 

1 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division of THE AMERICAN SOCI

ETY OF MECHANICAL ENGINEERS and presented at the AlChE-
ASME Heat Transfer Conference, Denver, Colo.. August 6-9. 1972. Manu
script received by the Heat Transfer Division. April 10, 1972: revised man
uscript received November 29. 1972. Paper No. 72-HT-59. 

Formulation 
Thermal Analysis. Based on the surface renewal and pene

tration model, the energy equation can be written for individual 
elements of fluid at the wall as 

It 
f,C rly oy 

(1) 

The pertinent boundary-initial conditions can be written as 

/ = 7,. at v = 0 (2) 

(3) 

/ T •_- 0 (4) 

where 8 represents the instantaneous contact time and 7", repre
sents the temperature of eddies at the first instant of renewal; Ti 
may be set equal to the bulk stream temperature, Tt,, for moder
ate to high Prandtl number fluids [I3J. Letting \f = (t - Tb)/(To 
- TD), tit = y/o,, and assuming K/Kt, - 1 + 0\p, with constant 
density, p. and constant specific heat, e, the integral form of 
equation (1) may be written as 

(}U r;; _ ^ . (fe
lt CO, 

,. ,,. , ..,,,„ - ,,, . -) (5) 
el" ' •„ " pro , orh „ 

St is the thermal penetration depth. 0 is a constant, and Ki, is the 
thermal conductivity evaluated at the bulk stream temperature. 

r„. 
It is assumed that the temperature profile can be approximated 

by a fourth-degree polynomial of the form 

'•' = <'t " ''"lit + 'V)f~ + <Vb ' ~~ r i ' b ' (6! 

This profile must satisfy the conditions 
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(i + A 

at 

at 

at 

at ih 

,- 0 

'h 

'It 

•h : 

»h "?i 
at ?)( 0 

(7) 

(8) 

(9) 

(10) 

(11) 

Equation (11) is obtained on the basis of an assumed constant 
wall temperature. Based on these conditions, equation (6) be-
comes 

;; = (1 - 6»," + 8n,3 - 3n , 4 ) + D(„ f - 3 n / + 3-n,:i - ')/) (12) 

where 

I) ----- ^ 13 (1 +,}) + | (1 + ii)(9 + 2 1 ,-i)]1 (13) 

Only the negative root is taken since it yields similar profiles for 
velocity and temperature in the case of constant properties. Note 
that equation (12) contains the time variation implicitly in the 
variable o,. The substitution of equation (12) into equation (5) 
gives 

d_ 
da 

rrl.fi ((V5 
20" • 

K„{1 + ii)D 
p r o . 

(14) 

Hydrodynamic Analysis. Similarly, the axial momentum 
equation for individual elements of fluid at the wall can be writ
ten as 

9(7 1 9 / ix3« 
•id " p 9 y 

with boundary conditions 
0 0 

at v 

(16) 

(17) 

ii = „ . at 0 --• 0 (18) 

The eddy velocity at the first instant of renewal, Ui, can be ap
proximated by the bulk stream velocity, lib [12]. Assuming n/po 
= 1/(1 + y\j/) with q = y/d and constant density, the integral mo
mentum equation can be written as 

1 a ^ 

fid ' „ u„ p6 o 
(19) 

V 

where <5 is the momentum penetration depth, 7 is a constant 
(with 7 > 0 representing heating and y < 0 denoting cooling for 
liquids), and nt, represents the viscosity evaluated at Tb. 

A velocity profile of the form 

— = (3» - Zif + rf) - A {,, - 3 , / + 3 , / - ,,' 

satisfies the boundary conditions 

and 

»( —) 

.'.'£-) 

a2(^) 

at 

at 

at 

where 

A = 

6, 

6A(1 -1- y) + 3yD 

a t 1} 

) (20) 

n = 0 (21) 

0 ^ 1 (22) 

r, = 1 (23) 

= 1 (24) 

r= 0 at ,; =- 0 (25) 

and A = 6( /6 
6A(1 + y) + yl) 

(15) Equations (19) and (20) lead to an expression for <5 of the form 

Ih ( 3 - / D ±- [ 6(1/4 + — 
ill) l K ' 20 

(26) 
5p (1 + y) 

Consideration of the Parameter A. The parameter A now is 
shown to be independent of time, B, by an analysis which is analo
gous to a presentation by Hanna and Myers [1] for the variable 
property laminar boundary layer problem. With equation (14) re
written as 

D 
(27) 

pc(2 /5 + 20 ^ A 5 

equations (26) and (27) lead to 

•Nomenclature" 

A = dimensionless parameter in velocitv Pr = Prandtl number, — " a 

profile . . , . „ . ., ,, 
.,.. , q. = instantaneous heat llux at the wall 

c = specific heat at constant pressure 
,, ,. . , d Re = Revnolds number, 
I) — dimensionless parameter in tempera- " i> 

ture profile l = temperature 
K = dimensionless parameter, 1/4 + 7*0 = wall temperature 

T/, = bulk stream temperature 
7', = temperature of eddies at first in

stant of renewal 

A !2() 

F = dimensionless parameter 

/ = friction factor; dimensionless 

h = coefficient of heat transfer 

K = thermal conductivity 

Kt, = thermal conductivity evaluated at 
bulk stream temperature 

Ku. = thermal conductivity evaluated at 
wall temperature 

hi) 
Nu = Nusselt number, 

K 

u = instantaneous velocity 
lie = bulk stream velocity 
Ui = velocity of eddies at first instant, 

of renewal 
y = transverse coordinate direction 

a = thermal diffusivity, 
PCp 

8 = instantaneous contact time 
n = dynamic viscosity 

v = kinematic viscosity 

(To = mean wall shear stress 
p = density 
T = mean residence time 
\j/ = dimensionless temperature, (t -

Tb)/{T0-T„) 
5 = hydrodynamic penetration depth 

it = thermal penetration depth 
Ii = dimensionless parameter for varia

ble conductivity 

7 = dimensionless parameter for varia
ble viscosity 

IJ = dimensionless hydrodynamic pa
rameter, y/i 

7]t = dimensionless thermal parameter, 

y/h 
A = ratio of thermal to hydrodynamic 

penetration depth, &t/& 
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where 

and 

d(A6) 

WE) 

F. - 1 / 4 + 
20 

(28) 

(29) 

with contact time between 0 and $ + dd. The form of the contact 
time distribution function has been shown to have very little in
fluence on the resulting expression for the temperature (concen
tration) profile [12]. Hence, the use of the simple uniform distri
bution proposed by Higbie [16] will be employed; this distribution 
takes the form 

<j)(0) = - 0 < f) < r 

F --
-K„(l + li)D(l + y) 

c (2 /5 + ^ ) Au . , , (3 -A) 
(30) 

With A = 0 at. 6 - do, separation of variables and integration 
gives 

a FdE-dA 
6 = 60 exp \ j 

A - FE 
I (31) 

Equation (31) should yield nonzero values of h for any initial con
dition 50. Hence as o0 -» 0 equation (31) indicates that (A - FE) 
-* 0. Thus for the case of <50 = 0 

A = FE 

The substitution for F and E in equation (32) yields 

(32) 

A = (1/4 + A ) ( n 
2/5 

20" 

) 

^ d 0) ) (Pd + r)} 
pc lh A (3 - A ) 

From equation (33) an expression can be written as 

D , , 1 , ,5 + A . 
Pr„. = (- ) (JL) rL 

8 + D VA2' 3̂ •A 
• ) 

(33) 

(34) 

where Pru, = nwc/Kw. Substituting the expression for the parame 
ter A into equation (34) gives 

2 yD 
Pr„, = ( 8 + D £? -) (35) 3A3(1 + yj 

For a constant wall temperature, Pr„, is a constant. Hence A is 
independent of 8 and it is concluded that the parameter A is in
dependent of 6. 

Formulation for Local Mean Nusselt Number. Equations 
(14) and (26) give rise to expressions for the penetration thick
nesses it and <5 of the form 

and 

62 = 

i0 Kb(l + ft)(-D)0 

(8 + D) pc '" 

40 ,i6(3 -A)8 
p(l + y) (5 + A) 

Hence A can be expressed as 

A2 ( - Z » ( 5 + A ) 
+ D) (3 - A ) Pr„, 

(36) 

(37) 

(38) 

(Equation (38) and the expression for the parameter A are solved 
simultaneously to determine A and A.) Based on equations (12) 
and (36), an expression can be written for the local instantaneous 
heat flux, qit of the form 

f/i 9 v ii 

- KW(T0 - T„)D 
, 4 0 ( - D ) K„ 

• 0 

(39) 
1 (8 + D) pc 

A consideration of the effect on the mean heat transfer of the 
numerous eddies in contact with the surface leads to the relation
ship for the local mean heat flux in terms of the contact time dis
tribution function, </>($), of the form [11, 14] 

(41) 

= 0 0 > T 
where r is the mean residence time of fluid elements at the sur
face. The coupling of equations (39), (40), and (41) leads to an ex
pression for the local mean coefficient of heat transfer of the form 

2 Kb (1 + H) ( - D) 
h = -

40( D MZiLT j t /2 
(42) 

D PC 

For constant properties, D = -2 such that equation (42) reduces 
to 

fKpc 
T 

This compares very well (within - 3 percent) with the exact solu
tion (derived for mass transfer [10]) 

2 [Kpc 

1.097 (43) 

h = (44) 

From equations (20) and (37) an expression can be written for 
the local instantaneous wall shear stress as 

07, uh 

IHP (3 - A ) (5 + A ) ] t / 2 (45) 
"L40 (1 + y ) 0 

The use of Higbie's uniform contact time distribution then gives 

= uh \ ^ ^ ^ ~ ~ - ]— ] i « (46) 07, 
1 p(l + y)r 10 

Hence, the mean residence time can be expressed in terms of the 
Fanning friction factor, /, as [14] 

'I = u f \P d + y)10 

2 lh (3 - A ) ( 5 + A ) 
(47) 

The substitution of equation (47) into equation (42) yields an 
expression for the local mean Nusselt number of the form 

Nu = g Re -TPr 
( -£>) (8 + D) (1 + P) (1 + y ) -,1/2 . 

( 3 - A ) ( 5 + A ) ' l 4 b ' 

where the Reynolds number, Re, and Prandtl number are evalu
ated at the bulk stream temperature. 

D i s c u s s i o n 
For constant properties (A = 1, D = - 2 ) equation (48) reduces 

to an expression of the form 

EQUATION ( 5 1 ) 

6 . 0 8 . 0 

</ (U (p(0)d0 (40) 1 + Y 

The contact time distribution is defined such that <j>(6)dd repre
sents the fraction of fluid elements in contact with the surface 

Fig. 1 Influence of viscosity ratio on heat transfer for the heating of 
liquids 
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Fig. 3 Variable viscosity influence on heat transfer for water 

Fig. 2 Friction factor data for the heating of water 

Nu., Re v P r (49) 

which is identical to the exact solution for uniform properties ob
tained on the basis of the elementary surface renewal and pene
tration model and which correlates experimental data for turbu
lent pipe flow with moderate Prandtl numbers [13], Accordingly, 
equation (48) can be written more conveniently as 

Nu f | ( - D) (8 + I)) (1 + ti) (1 + ,-) 
NIK ./, (3 -A) (f + A) (50) 

This expression reduces further for constant conductivity (i.e., /? 
= 0) to 

Nu 
Nu r 

3.46 (l + r) 

/, A) (51) (3 -A) (5 

The influence of the viscosity ratio, bulk to wall, on the product 
Nu/Nu c p. predicted by equation (51) for heating is shown in Fig. 
1 for values of the Prandtl number ranging from 2 to 8. It must be 
mentioned that when 7 > 0.648 and Pr = 8 the present computa
tions yield negative values of A. This obviously has no physical 
meaning. To overcome this mathematical breakdown, the 
smoothing condition (after Goodman [17]) 

fLii 
3y : i 

= 0 at v (52) 

is employed in place of equation (25). The use of equation (52) 
yields the value - 1 for the parameter A and this value is used in 
equation (51) only when 7 > 0.648 for Pr = 8.0. This figure 
suggests that the effect of variable viscosity on the heat transfer 
is somewhat dependent upon the Prandtl number. 

Although friction factor data for turbulent variable viscosity 
flow are somewhat scarce for moderate values of the Prandtl 
number, some experimental friction factor data for water at a 
Prandtl number equal to 8 have been published by Allen and 
Eckert [18]. These data for heating are shown in Fig. 2. An equa
tion of the form 

1/6 I 7 - (1 + 1) (53) 

suggested by Petukhov [6] fits the data well. Based on these data 
for friction factor, equation (51) is compared in Fig. 3 with experi
mental heat transfer data for heating of water (thermally devel
oped, constant wall heat flux) by Allen and Eckert [18]. The pro
posed model correlates these data reasonably well. Although this 
analysis assumes a constant wall temperature condition, equation 
(51) can be expected to apply for the uniform wall flux condition 
for moderate Prandtl number fluids. For comparison purposes, 
the semitheoretical prediction for Nu/Nu c .p . by Deissler [4] and 

the empirical correlation proposed by Petukhov [6] and Seider 
and Tate [19] are also included in Fig. 3. 

Fig. 4 shows the influence of variable conductivity on heat 
transfer as predicted by equation (50) for heating and cooling. It 
is observed that the influence of variable conductivity is more 
pronounced for the case of heating than for cooling. 

Conclusion 
The elementary surface renewal and penetration model togeth

er with an approximate integral formulation has been shown to 
correlate available experimental heat transfer data for variable 
viscosity moderate Prandtl number fluids. Based on this formula
tion, the effect of both viscosity and conductivity variation on the 
turbulent heat transfer appears to be mildly dependent upon the 
Prandtl number. Accordingly, the familiar empirical relationship 
given by 

Nu = (^) 

where n has been said to be constant [20], may be somewhat in 
error. However, additional experimental evidence is needed to 
form a firm conclusion. 

Although the method presented herein can be extended to in
compressible gas flow, this analysis must be restricted to fluids of 
moderate Prandtl number (0.5 < Pr < 10). For low values of the 
Prandtl number, molecular conduction becomes significant dur
ing the flight of eddies such that T, in equations (3) and (4) can 
not be set equal to Tb. For large values of the Prandtl number, 
the thermal resistance of unreplenished fluid which remains adja-

1 . 0 

- 0 . 1 

EQUATION ( 5 0 ) 

Fig. 4 Variable conductivity influence on heat transfer for the heating 
(7 > 0) and cooling (7 < 0) of liquids 
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cent to t h e wall becomes i m p o r t a n t . Due to recent success in the 
model ing of bo th low a n d high P r a n d t l n u m b e r fluids by use of 
the pr inciple of surface renewal [14, 15], the present analysis 
would a p p e a r to provide direct ion in the analysis of var iable 
proper ty hea t t ransfer for these fluids. 
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Apparent Hemispherical Emittance of Baffled 
Cylindrical Cavities 

E. M. SPARROW," R. P. HEINISCH,2 

and N. SHAMSUNDAR' 

Introduction 

In this paper, an efficient Monte Carlo method i.s employed 
to determine how I lie radiant energy streaming from an iso
thermal cylindrical cavity is affected by a baffle partially ob
structing the opening. Consideration is given both to baffles 
that are at the same femperature as the cavity wall (emitting 
baffles) and to baffles that are at temperatures well below the 
wall temperature fnonemitting baffles). The other parameters 
thai were varied included the emittance of the wall, the depth-
to-radius ratio of the cavity, and the baffle size. The calcula
tions were performed for gray, diffusely emitting and reflecting 
surfaces. The results are presented in terms of the apparent 
hemispherical emittance of the cavity. 

The Monte Carlo method used here is an adaptation of that 
described in detail in connection with an investigation of baffled 
conical cavities [l].'1 Although a number of modifications were 
made to accommodate the cylindrical geometry, the essential 
features of the method remain intact. Consequently, only a 
qualitative outline of the method will be presented here. The 
basis of the method is the realization that the radiant energy 
streaming out of the aperture consists of two components. One 
component is the emitted radiant energy that reaches the aper
ture directly, without internal reflections. The second com
ponent includes the radiant energy that reaches the aperture 
after one or more internal reflections within the cavity. Con
sistent with the foregoing, the energy content of each photon 
bundle is partitioned into two portions. One portion leaves 
the cavity without undergoing internal reflections, whereas the 

1 Department, of Mechanical Kntrineering, University of -Minnesota, 
Minneapolis, Minn. Mem. ARMJJ. 

2 Honeywell, Inc., .St. I'aul, Minn. 
3 Department of Mechanical Engineering, University of Minne

sota, Minneapolis, Minn. 
•< Numbers in brackets designate References at end of technical 

brief. 
Contributed by the Heat Transfer Division of THE AMERICAN 

SOCIETY OF MECHANICAL ENOINEERS. Manuscript received by the 
Heat Transfer Division December f>, 1972. 

second portion remains in the cavity where it may either experi
ence reflections and ultimately emerge from the aperture or be 
absorbed. Since such photon bundles generally make at least 
one contribution to the outstreaming radiation, the results are 
obtained with substantially fewer photon bundles than would be 
required by conventional .Monte Carlo methods. 

A schematic diagram of a baffled cylindrical cavity is shown in 
Fig. 1. The cavity has depth L and radius /t0, and the radius 
of the aperture in the baffle is Ra. The axial and radial coordi
nates are r and z, respectively. Also pictured in the figure are 
the angles 6 and <j> of a spherical coordinate system locally im
planted at a typical point P on the cylindrical wall of the cavity. 

Previous investigations of balfled cylindrical cavities have been 

0 0.1 0.2 0.3 0.4 0.5 

( R - R ) / R 
0 0 0 

Fig. 1 Upper portion: schematic diagram of a baffled cylindrical 
cavity; lower portion: apparent emittance results for a cylindrical cavity 
with depth-radius ratio L/Ra = 1 
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Fig. 2 Apparent emittance results for cylindrical cavities with depth-
radius ratios L/R0 = 1 and 4 

concerned with the apparent normal emittance of an element 
at the center of the cavity base (2, ;•!], the series method of DeVos 
[4] having been employed by both investigators. 

Outline of the Analysis 

In a Monte Carlo model of the radiant interchange process, 
photon bundles are released at random locations on the cavity 
wall and (if emitting) on the baffle. If there are .V photon (or 
ray) bundles, then each bundle is assigned an energy content B* 
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E* = eaT'AJX (I) 
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Eout is the sum of the contributions from each photon bundle 
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«(-!„ .1,,) F Ji 
to. = •• . E (F' +G;) w 

L >=i 

Results a n d Discuss ion 

The apparent emittance results are presented in Figs. 1 and 2. 
In each graph, ta is plotted against the baffle size parameter 
(7?o — R„)/R<,, which gives the fraction of the cylinder radius 
that is blocked by the baffle. The three graphs presented in the 
aforementioned figures correspond, respectively, to cavity depth-
to-radius ratios L'R(, of 1, 2, and 4. The curves appearing in 
each graph are parameterized by values of the wall emittance e 
of 0.5, 0.7, and 0.9. The solid lines correspond to the case in 
which the baffle is emitting, and the dashed lines are for the case 
of the noneniitting baffle. 

An examination of the figures reveals several interesting trends. 
The apparent emittance is seen to increase as more and more of 
the cavity opening is blocked by the baffle. The effect of the 
baffle is more marked when the cavity is relatively shallow (i.e., 
smaller L/A'o) and also at lower values of the wall emittance e. 
From a comparison of the solid and dashed lines, it may be con
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The differences lief ween the apparent emittance results for 
cavities with L/R„ = 2 and L/R0 = 4 were found to be rather 
small, especially for the larger values of e. For e = 0.5, the 
differences were of the order of one or two in the second significant 
figure. 

An assessment of the accuracy of the present results may be 
made by comparing the e„ values for the unbaflled cavity with 
those of Lin [fij obtained from numerical solutions of integral 
equations. Typically, the two sets of results agreed to within 
two in the third significant figure. 
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Nomenclature 

Bi = Biot number. 
hro 

(\ = radiation parameter 
vtTfro 

C2 = environmental temperature parameter,—f-

iV = coordinate system designator 

S* = Stefan number, -:-=— 
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v = spatial coordinate,— 

r = interface position, — 
ra 
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r - time, —7T-r 
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T* = total time to solidify 
T0* = total time to solidify with no radiation present 

0 = temperature distribution, 
77 

Introduction 
The problem of predicting solidification rates has applica

tion in many fields ranging from freeze-drying to metals casting. 
When the solidification takes place at high temperatures, as in 
the case of metals castings, radiation and convective heat transfer 
are both significant mechanisms of cooling at the fixed outer sur
face. Several investigators [1-4]3 have solved the inward or out
ward solidification problems with constant temperature, constant 
heat flux, or convective boundary conditions using a variety of 
techniques. These types of boundary conditions allow for a sim
plified closed-form solution by the method of London and Seban 
[1], where the quasi-steady assumption is used to neglect the heat 
capacity of the solidifying material. For the radiative problem, 
solutions based on the quasi-steady temperature distribution are 
not possible due to the nonlinearitv of the boundary condition. 
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Fig. 1 

By writing the governing equations in dimensionless form, the 
problem is stated in generalized form in terms of three controlling 
parameters; a modified Stefan number, the Biot number, and a 
radiation parameter. An implicit numerical scheme is used to 
solve the complete inward solidification problem for slabs, cylin
ders, and spheres with a mixed radiative and convective boundary 
condition at the outer surface. 

Analys i s 
Fig. 1 shows schematically the configuration of the problem to 

be solved. Initially, the entire region is liquid at the fusion tem
perature, 7',. Cooling of the outer surface by radiation and con
vection leads to removal of energy from the liquid region suffi
cient to cause a phase change. The governing equation in nondi-
mensional form for heat transfer in the newly formed solid region 
for the three coordinate systems is 

A' = 0 C a r t e s i a n s y s t e m 
A' = 1 cy l indr i ca l s y s t e m (1) 
A' = 2 s p h e r i c a l s y s t e m 

Assuming that the outer surface is approximately gray, the as
sociated boundary conditions are 

f ) V - ' V r»V _ 

(1,7) = C,|.f->4(1,7) c 

ii(r, r) -_- 1 
dr 
(FT 

(r 

Bi|fl(l . r) - C, 

r (0) ^ 1 

(2) 

(3) 

The three significant dimensionless parameters are the modi
fied Stefan number, S*, the Biot number, Bi, and a radiation pa
rameter, Ci- The Stefan number is usually specified as to include 
a characteristic temperature difference (CPST/L), but when ra
diation is an important heat transfer mechanism, an absolute 
value is used as the characteristic temperature. In the solidifica
tion process of metals, the fusion temperature. 7V, can be high 
(-=• 2000R) and the latent heat of fusion low, yielding typically-
high values of C,,Tf/L. 

Solution 
Because of the nonlinearitv of the previously stated problem, 

methods of determining analytical solutions are not known, even 
for the simplified case of S* —» 0. However, by replacing the spa
tial differentials in equations (1). (2), and (3) with central differ
ence quotients and the time differential with backward implicit 
quotients, a set of nonlinear algebraic equations is generated 
which can be solved. 

The method of solution for the algebraic equations consists of 
fixing the point of interface advancement for a finite number of 
regular intervals of Sy starting at y = 1 and determining the time 
required for this movement to occur by satisfying all applicable 
difference equations. Because of the nonlinearitv of the problem, 
a predictor corrector technique is used. This is done by estimat
ing the temperature of the space grid point immediately next to 
the solidification grid point and working backwards through the 
equations to find the temperature at the fixed wall grid point. If 
the boundary condition is not satisfied, the procedure is repeated, 
with a new estimated temperature near the solidification front. 
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When the solidification takes place at high temperatures, as in 
the case of metals castings, radiation and convective heat transfer 
are both significant mechanisms of cooling at the fixed outer sur
face. Several investigators [1-4]3 have solved the inward or out
ward solidification problems with constant temperature, constant 
heat flux, or convective boundary conditions using a variety of 
techniques. These types of boundary conditions allow for a sim
plified closed-form solution by the method of London and Seban 
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By writing the governing equations in dimensionless form, the 
problem is stated in generalized form in terms of three controlling 
parameters; a modified Stefan number, the Biot number, and a 
radiation parameter. An implicit numerical scheme is used to 
solve the complete inward solidification problem for slabs, cylin
ders, and spheres with a mixed radiative and convective boundary 
condition at the outer surface. 

Analys i s 
Fig. 1 shows schematically the configuration of the problem to 

be solved. Initially, the entire region is liquid at the fusion tem
perature, 7',. Cooling of the outer surface by radiation and con
vection leads to removal of energy from the liquid region suffi
cient to cause a phase change. The governing equation in nondi-
mensional form for heat transfer in the newly formed solid region 
for the three coordinate systems is 

A' = 0 C a r t e s i a n s y s t e m 
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The three significant dimensionless parameters are the modi
fied Stefan number, S*, the Biot number, Bi, and a radiation pa
rameter, Ci- The Stefan number is usually specified as to include 
a characteristic temperature difference (CPST/L), but when ra
diation is an important heat transfer mechanism, an absolute 
value is used as the characteristic temperature. In the solidifica
tion process of metals, the fusion temperature. 7V, can be high 
(-=• 2000R) and the latent heat of fusion low, yielding typically-
high values of C,,Tf/L. 

Solution 
Because of the nonlinearitv of the previously stated problem, 

methods of determining analytical solutions are not known, even 
for the simplified case of S* —» 0. However, by replacing the spa
tial differentials in equations (1). (2), and (3) with central differ
ence quotients and the time differential with backward implicit 
quotients, a set of nonlinear algebraic equations is generated 
which can be solved. 

The method of solution for the algebraic equations consists of 
fixing the point of interface advancement for a finite number of 
regular intervals of Sy starting at y = 1 and determining the time 
required for this movement to occur by satisfying all applicable 
difference equations. Because of the nonlinearitv of the problem, 
a predictor corrector technique is used. This is done by estimat
ing the temperature of the space grid point immediately next to 
the solidification grid point and working backwards through the 
equations to find the temperature at the fixed wall grid point. If 
the boundary condition is not satisfied, the procedure is repeated, 
with a new estimated temperature near the solidification front. 
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This procedure is iterated until the boundary condition becomes 
an equality to within a small error. 

In the limiting case of S* -* 0 and C\ -» 0, analytical solutions 
can be obtained by the method of [1]. This yields both the tem
perature distribution and the movement of the solidification front 
with time. 

Results and D i s c u s s i o n 
Numerical calculations were performed as mentioned in the 

foregoing with space steps Ay = 0.05. Iterations of the algebraic 
equations were performed to determine the temperature near the 
interface to within ±10^ 7 . The equality of the boundary condition 
at the outer surface was satisfied within an average value of 10 ~4 

over all ranges of the parameters considered in the present analy
sis. 

Authentication of the computational scheme was made by-
comparison with exact analytical solutions by the method of [1] 
for S* = 0. The numerical results for S* = 0 and C\ = 0 yielded 
results for r = / (T) that were within 3.8 percent of the analytical 
results. 

Fig. 2 shows the effect of S* and Biot number upon the total 
time to solidify, r0*, for the three coordinate systems when ra
diation is absent. 

It is of interest to determine under what conditions radiation 
can be neglected for inward solidification calculations. This can 
be found by comparing the total time to solidify for the case of 
radiation and convection, T*, to that for pure convection, r()*. 
The ratio T*/TQ* was formed for all reasonable ranges of the pa
rameters. It was found that the ratio showed very little depen
dence upon all parameters except C\ and Bi. Fig. 3 is a plot of 
r*'T„* for the range of Biot number and radiation parameter, C1 

(with S* = 1.0 and C2 = \ for the cylindrical system). As expect
ed for large Bi, radiation contributes only a small amount to 
changing the total time to solidify. For Bi < 1, the presence of a 
radiative mechanism of heat transfer can reduce r* by a factor of 

BIOT NUMBER 

Fig. 3 

two or more. Similar curves were obtained for the three coordi
nate systems over the range of Stefan number and C2, but the 
ratio varied only a few percent from the case shown in Fig. 3. 

It was found from these computations that if C\ <% Bi2 the total 
solidification time with radiation was within 10 percent of the 
values obtained by neglecting radiation. Several other conclusions 
were reached upon examination of the results: 

1 Since S* is typically much greater than zero in the solidifi
cation of metals, the assumption S* ~ 0 and resulting analytical 
solution by the method of [1] can lead to large errors in the deter
mination of total solidification time. 

2 The temperature distribution inside the solid region is not 
uniform even when the Biot number is small. The temperature at 
the outer surface was typically 0.7 near the end of the solidifica
tion process. 
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T a b l e 1 T h e S o l u t i o n s Inner layer 
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right circular cone, with its apex downwards and axis vertical, 
has been studied by Merk and Prins [l),2 Hering and Grosh [2], 
and Hering [3]. In [2 and 3] one finds extensive studies of the case 
when the surface temperature is given by 

T, T, = x"(T0 - TJ, (1) 

where T is the temperature, the suffixes w, » , and 0 stand for the 
values on the surface, at a large distance from the surface and at 
x - 1, x being the nondimensional coordinate along a generator, 
defined by x = (X/.L), L being the slant height. The corresponding 
similarity solutions are given by the equations 

/ • - ' " + { ~ ^ - ) FF" - ( L ± _ » . ) ( F ' ) 2 + 0 = 0 , (2) 

(/" + P r {(l-t^-)Ffi' - nF'0\ = 0, 

subject to the boundary conditions 

F(0) = F '(0) = F ' ( » ) = 0 , 

0 (0) = l,ft (*>) = 0 

(3) 

(4) 

In the foregoing, F, 8, and Pr are, respectively, the nondimen
sional stream function, nondimensional temperature, and Prandtl 
number of the fluid. A prime denotes differentiation with respect 
to the similarity variable TJ. 

The purpose of this note is to extend the works of Hering and 
Grosh [2, 3] to include fluids with Prandtl numbers greater than 
unity—a case that has not been considered so far. 

High Prandt l N u m b e r Analys i s 
For large values of Pr, one can divide the whole boundary layer 

into two regions—one in which the inertial forces are negligible 
compared with the viscous forces and in which the temperature 
difference is brought to zero, and another which is an isothermal 
shear layer and in which the velocity parallel to the surface is 
brought to zero again. These regions, of thicknesses 0 (Pr~1 /4) 
and 0 (Pr1 /4), may be called the inner and outer layers, respec
tively. We shall use this so-called double-boundary-layer concept. 
This concept was developed by Le Fevre [4], Morgan and Warner 
[5b], Stewartson and Jones [6], and Kuiken [7], and described in 
detail by Roy [8]. The different variables suitable for these layers 
are defined as follows: 

2 Numbers in brackets designate References at end of technical brief. 

T a b l e 2 V a l u e s o f F " ( 0 ) a n d N u x G r A 

P r 
Present work 

n F " ( 0 ) 
0 0.859998 
1/5 0 .831275 0 .558471 
1 0.750942 0.657779 

f o r 

Hering [3] 
N u i G r j - 1 / . F " ( 0 ) NuxGr .Y-V. 

0.527518 0 .7694 0 .5105 
0 .7475 0.5148 
0 .6815 0.6389 

Oute r l aye r 

<;, = P r 1 / ' , , , 

F(v) = P r - 3 / 4 F , (<:,), 

"(»?)•= * i (? , ) ; 

t-i = P r ~ 1 / l V, 

F(V) = P r - 1 / 4 F 2 a 2 ) , 

Ob]) = 0 

(5) 

(6) 

Substituting from (5) and (6) in (2) and (3) we see that the 
three equations for Fi, <J>i, and F2 suggest series solutions in some 
negative powers of Pr. By matching the inner solutions for large 
fi, with the outer solutions for small fo we determine these series 
together with the missing boundary conditions at fi = <= and fo 
= 0. Thus the solutions may be written as 

F , = F 1 0 + P r - ' ^ F , , + P r - ' F , , + 

P r - - 1 / 2 , + P r " 1 * , , + (7) 

F2 = Fm + P r Fn + P r " ' F , 2 + 

The equations for different fVs, <t>i's, and F2 's and the bounda
ry condition are not given here as they can be very easily ob
tained exactly in the same way as shown by Roy [8]. 

These equations have been solved numerically on an electronic 
computer for n = 0, Ys, and 1. The first two values of n correspond 
to the isothermal and uniform heat flux surface conditions, while 
n = 1 is the case when the similarity variable is independent of 
X. The results are presented in Table 1. 

Skin Frict ion and H e a t Transfer 

Skin fr ic t ion i s p r o p o r t i o n a l to ( 
d2F 
drj1 

which is given by 

dif 
P r - , A 1 [ F , „ " (0) + P r " /2 JV'(o) 

+ J>r-lFS2"(0) J (8) 
However, the most important result of practical interest is the 
heat transfer. A local Nusselt number has been defined by Hering 
and Grosh [2] as 

f/.V 
Afuv (I ^ (9) 

which r e d u c e s to 

Nuv = - ( G r . P r ) " 1 L^oHO) + P r " 1 7 2 * , , 1 (0) 

+ P r - ' ^ V O ) j (10) 

It is obvious that the greater the Prandtl number, the better 
are the formulas (8) and (10). The highest value of Pr for which 
results are available in the literature is 1. In Table 2 we compare 
the values of F"(0) and Nu* for Pr = 1 obtained from (8) and 
(10) with these given by Hering [3], who based his calculations on 
a small Prandtl number theory. 
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Introduction 
The surface renewal and penetration model has recently been 

adapted to the simplified problem of heat transfer for a turbulent 
boundary layer flow with a step change in wall temperature at 
process time, t, equal to zero [l].2 The main modification of the 
steady state form of the surface renewal and penetration model 
was the development and utilization of the transient age distribu
tion 4>it,d); this transient contact time distribution takes the form 
[1,2] 

* ( / , 0) = - + (1 _ i ) 6(0 - /) for 0 £ I) < / •< j (1) 

T(l,y) = f Til, t),y)<!)(l, 0)dH (4) 

and 

(b(t, 0) = 0 for / < f) -: r, 

S is the unit impulse function and x is the mean residence time. 
This distribution accounts for the fact that the contact time, 8, 
can not be greater than the process time, t. The coupling of the 
basic surface renewal and penetration model and the transient 
contact time distribution function leads to an expression for the 
unsteady mean temperature profile, T(t,y), of the form 

r(l,y) = / T(0,y)o{l,O)dO (2) 

The previous formulations of the unsteady surface renewal and 
penetration model have been restricted to the case for which the 
surface experiences a step change in potential. That is, the solu
tion for Tid,y) has been obtained on the basis of an expression of 
the form 

dT a'j'~T 
(3) 

with T(o,y) = Ti, T(ff,o) = T0 and T(0,») = Ti. The primary ob
jective of the present paper is to develop the transient surface re
newal and penetration model for the case in which the wall 
boundary condition is a function of time, such that a solution for 
the instantaneous profile T(t,B,y) becomes available. An expres
sion then can be written for T(t,y) as 
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Formulat ion 
Consider a turbulent flow process for which the fluid tempera

ture and wall temperature are initially equal to 1\, with the wall 
temperature given as a function of time, t: i.e., Tit.o) = Fit). 
Based on the surface renewal and penetration model, the energy 
equation for individual elements of fluid during their residency at 
the surface [away from the leading thermal edge] can be written 
in the form of equation (3). The initial condition and the bounda
ry condition away from the wall given in the foregoing are used, 
along with a wall boundary condition of the form 

T = c{9) at v = 0 (5) 

where \p(9) remains to be determined. 
In order to specify ${$), attention is turned to the contact time 

distribution. The uniform transient contact time distribution 
given by equation (2) is shown in Fig. 1 for several values of t/r. 
Each of these representative distribution conditions will now be 
considered in terms of a finite region of the surface. For t much 
less than r (Fig. 1(a)), a small fraction of the fluid (equal to t/r) 
has been removed from the surface and has been replaced as rep
resented by Fig. 2(a). This fresh fluid has been in contact with 
the surface for values of T ranging from 0 to t. The remaining 
fraction of the surface is in contact with "old" fluid having been 
in thermal contact for 8 - t. For the case in which t is somewhat 
less than T (Fig. lib)), only the small fraction of the surface (1 -
t/r) shown in Fig. 2(b) remains in contact with old fluid, for 
which B = t. The large fraction of the surface [t/r] has been re
freshed by the renewal process such that 8 < t. Finally, for the 
third representative condition with t greater than T (Fig. 1(c)), all 
fluid which was in contact with the heating surface at t = 0 has 
been replaced by fresh fluid as shown by Fig. 2(c). 

Returning to Fig. Kb), the small fraction of fluid at the surface 
at the instant t with contact time Bn arrived at the heating sur
face at process time t - 9„. This fraction of the fluid was exposed 
to a wall temperature which varied according to Fit) from Fit -
6n) to Fit). This picture can be generalized for any process time, 
and for that matter, contact time distribution. That is, at any-
given process time t, the fraction of fluid which has been in con
tact with the heating surface for time ffn can be considered to 
have been exposed to a wall condition prescribed by T = Fit - Bn 

+ 8). Hence, the appropriate wall boundary condition becomes 
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S is the unit impulse function and x is the mean residence time. 
This distribution accounts for the fact that the contact time, 8, 
can not be greater than the process time, t. The coupling of the 
basic surface renewal and penetration model and the transient 
contact time distribution function leads to an expression for the 
unsteady mean temperature profile, T(t,y), of the form 
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The previous formulations of the unsteady surface renewal and 
penetration model have been restricted to the case for which the 
surface experiences a step change in potential. That is, the solu
tion for Tid,y) has been obtained on the basis of an expression of 
the form 
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with T(o,y) = Ti, T(ff,o) = T0 and T(0,») = Ti. The primary ob
jective of the present paper is to develop the transient surface re
newal and penetration model for the case in which the wall 
boundary condition is a function of time, such that a solution for 
the instantaneous profile T(t,B,y) becomes available. An expres
sion then can be written for T(t,y) as 
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T = c{9) at v = 0 (5) 
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In order to specify ${$), attention is turned to the contact time 

distribution. The uniform transient contact time distribution 
given by equation (2) is shown in Fig. 1 for several values of t/r. 
Each of these representative distribution conditions will now be 
considered in terms of a finite region of the surface. For t much 
less than r (Fig. 1(a)), a small fraction of the fluid (equal to t/r) 
has been removed from the surface and has been replaced as rep
resented by Fig. 2(a). This fresh fluid has been in contact with 
the surface for values of T ranging from 0 to t. The remaining 
fraction of the surface is in contact with "old" fluid having been 
in thermal contact for 8 - t. For the case in which t is somewhat 
less than T (Fig. lib)), only the small fraction of the surface (1 -
t/r) shown in Fig. 2(b) remains in contact with old fluid, for 
which B = t. The large fraction of the surface [t/r] has been re
freshed by the renewal process such that 8 < t. Finally, for the 
third representative condition with t greater than T (Fig. 1(c)), all 
fluid which was in contact with the heating surface at t = 0 has 
been replaced by fresh fluid as shown by Fig. 2(c). 

Returning to Fig. Kb), the small fraction of fluid at the surface 
at the instant t with contact time Bn arrived at the heating sur
face at process time t - 9„. This fraction of the fluid was exposed 
to a wall temperature which varied according to Fit) from Fit -
6n) to Fit). This picture can be generalized for any process time, 
and for that matter, contact time distribution. That is, at any-
given process time t, the fraction of fluid which has been in con
tact with the heating surface for time ffn can be considered to 
have been exposed to a wall condition prescribed by T = Fit - Bn 

+ 8). Hence, the appropriate wall boundary condition becomes 
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Prediction for Nusselt number for linear increase in wall temper-

•Hf>) = /-•(/-(>„ + o) (6) 

with t — tin held constant. 
The solution of equation (3) with the prescribed conditions and 

with \friB) given by equation (6) leads to a relationship for the in
stantaneous temperature profile within the wall region, Tit, Bn, ti, 
y). This expression actually represents the temperature history 
for process time ranging from t - Bn to t of the fraction of the sur
face with contact time $„. Because the solution for the mean tem
perature profile at the process time t is desired, this instanta
neous profile must be evaluated at B = 8n. The resulting instanta
neous temperature profile Tit, 0„, II, y)j.„,. ,,„ represents the 
contribution to the overall mean profile at any given value of t of 
each 0n-segment of the surface. Therefore, the mean temperature 
profile can be written as 

T(l,y) = / T{l,0n,e,y)'>9=t)no(t,0n)dH (7) 

Applicat ion 
As illustrations of the use of the proposed formulation concept, 

turbulent boundary layer flow past a flat plate has been consid
ered for several wall temperature conditions [3]. For a linear 
time-variation in wall temperature, \piti) becomes \[/(6) = t - Bn + 
B. With this expression for i//, the proposed analysis gives rise to 
an expression for Tit, 0n, 9, y) of the form 

Til, n„, 0, v) = T; erf X + (I - fln) eric X + 

+ 0| (1 + 2A'2) erf c X - - z A' exp ( - A'2)] (8) 

where X = y/(2\/aF). Equations (1), (3), and (8) [with 0 = »„} give 
expressions for T(t,y) of the forms 

rf (Yjj-)d(f) + (1 - (~S) erf (Y jt ) 

(9,7) - r ' p + 2YHl + (y, f ) + 1] e r f c {Y - ) + 

2Y r ,2 
-,T T* ' 3 

| ( £ ) " + l j e x p ( - F 2 ( f )") 

for / s r 
and 

1 % ^ = | i I'' erf (Y [J-)rffe + [± ^ 1 (9a) 
In hi "l, V "n ' it 

1Y 

+ 2 F 2 ( 1 

2 1 2 „„ 2 , ,i\~ 

"r 
+ II 

e r f c Y-^4- (jj 1=- r 2 + | + ( M ] exp ( - Y2) (96) 

for t — r 

Y = \ 7 ( 2 V C Y T ) , r = U*^7/v and r* = U*iTTv. 

Expressions can also be written for the mean (spatially averaged) 
unsteady Nusselt number as (for Ti equal to 0) 

Nu = / f r R e L v ' P r J ^ (2 + ~ {'— )"] for / £ T (10«) 
v' 6 V 77/ 3 T 

and 

Nit = I g R e L >. Pr i <P* for / £ r (106) 

Formulat ion for T. Because a hydrodynamica l ly s teady tur

bu len t flow condi t ion is considered in this s tudy , previous formu

lat ions for x [4] can be a d a p t e d . Briefly, these formula t ions for r 

are based on the a d a p t a t i o n of the surface renewal and penet ra 

t ion model to m o m e n t u m transfer and lead to a re la t ionsh ip for 

boundary layer flow with dP/dx = 0 of the form 

U 
Uj_ 

u* 
(11) 

where U* [ = U*= \ZfIj2~] is the friction velocity, fx is the local 
Fanning friction factor, and Ut represents the velocity at the first 
instant of renewal. With Ui set equal to U<», Ut/U* is simple 
equal to s/TJTx-

Results. Fig. 3 represents the unsteady mean Nusselt number 
results from equations (10a) and (106) as well as Nusselt number 
results for a step change in wall temperature to T0 at f = 0. Inter
estingly, the solutions for these two conditions come together for 
large t/r. 

Concluding R e m a r k s 
With the basic concept now in hand, the proposed model can 

be applied to more realistic situations for which experimental 
data are available. In this connection, the use of this principle in 
the analysis of transient heat transfer for turbulent flow over a 
flat plate with appreciable thermal capacity and a step jump in 
heat flux is now underway. 
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Heat, Mass, and Momentum Transfer 
During the Melting of Glacial Ice in 
Seawater1 

R.-G. Watts.2 This is a very interesting and timely paper in that 
it treats a problem that will surely become increasingly important 
to those arid regions of the world tiiat are close enough to Antarc
tic;! to use fresh water derived from melting icebergs. The solu
tion presented here has merits independent of the particular ap
plication to the melting of icebergs, of course. In regard to this 
particular application, however, I would like to raise the question 
of whether free convection might be a very important factor. 
I might add that it enters the problem in a very complex and 
interesting way. It happens that the density temperature curve 
for water has a maximum near 4 deg C. Hence, if an infinite flat 
plate of ice melts in water at, say, 4 deg C the water near the 
ice is relatively buoyant, and a fairly typical free convection 
problem results with the cooler liquid near the ice floating up
wards. If the water is at 10 deg C the problem becomes more 
complicated. In the inner part of the thermal boundary layer 
dp/dy is positive, but after the temperature reaches about 4 deg 
C dp/dy becomes negative. What is the flow pattern? When 
I dunked a colored ice cube in cold water (about 10 deg C) the 
flow of colored melt was vigorously downward. 

When you do this same experiment in salt water things are 
even more complicated. The fresh water that melts from an 
ice cube (or an iceberg) is a good deal lighter than the surround
ing salt water. The density of the fresh water is about 1 g/cm3, 
while that of salt water with a salt content, or 35 ppt is about 
1.03 g/cm3. When I repeated the colored ice cube experiment 
in salt water and injected a little food coloring near the ice for 
good measure, I found the flow to be strongly upwards, except 
possibly very near the ice where there might have been a slight 
downward motion. 

The buoyancy caused by the concentration gradient is stronger 
than that caused by the temperature gradient, especially if the 
water is fairly cold. The density difference between fresh water 
at 4 deg C and fresh water at 15 deg C is about 0.874 X 10~3 

g/cc, compared to Ap = 3 X 10 - 2 g/cc for 35 ppt salt water and 
fresh water. 

Finally, note that the ratio Gr Tie2 using a conservative length 
scale of 300 m for an Antarctic iceberg and a velocity of 7 
m/sec (corresponding to a Gulf .Stream) is 2.3. This is computed 
on the basis of Ap = 3 X 10 ' 2 g/cc. 

1 By O. M. Griffin, published in the Aug. 1973 issue of the JOURNAL 
OF HEAT TRANSFER, TRANS. ASME, Series C, Vol. 95, No. 3, pp. 
317-323. 

2 Department of Mechanical Engineering, Tulane University, New 
Orleans, La. 

Authors' Closure 
The author wishes to thank Professor Watts for his interesting 

discussion of this paper. The use of Antarctic icebergs as a source 
of fresh water has recently become a topic of increased interest. 
A feasibility study has been made of one proposed concept for 
iceberg towing and harvesting [II] ,3 and a detailed appiaisal 
of icebergs as potential fresh water sources has been published 
this year ]12], These studies have aroused considerable interest 
in the media [13, 14], perhaps because there are 1.2(1012)m3 of 
glacial, or pure, icebergs formed each year in Antarctica. 

Free convection heat transfer is often an important factor 
during the melting of ice, and the complexity of the system is 
increased because of the density maximum that is found in pure 
water at 4 deg G. Free convection with melting and freezing 
in a pure water-ice system has been studied by Boger and West-
water [15] and Yen and colleagues [Hi, 17, IS], among others. 
The interesting ice cube experiments described in Professor 
Watts' discussion seem to take place in a totally free convection 
environment, and his conclusions are correct from that stand
point . 

The melting of glacial ice in seawater is further complicated 
by the dependence of (he density maximum and the freezing 
temperature on the salinity or the concentration of dissolved 
species [1!)|, as plotted in Fig. (>. For salinities greater than 
C = 24.7 g Kg there is no density maximum. Using the meth
ods developed in the subject paper, when glacial ice at 0 deg G 
melts in seawater of 15 deg G and 35 g Kg salinity, the thickness 
of the salinity boundary layer oV extends over only 35 percent of 
the thermal boundary layer 8, and over only 17 percent of the 
momentum boundary layer o,„. The water temperature at the 
edge of the salinity boundary layer under these conditions is 
!) deg G, and the local water temperature is greater than the 
local inversion temperature (temperature of maximum density) 
for // > 0.07 8,. 

If one assumes that a reasonable assessment of the free con
vection can be obtained from the temperature dependence alone, 
comparison with Professor Watts' estimates is possible. Buoy
ancy effects due to both temperature and salinity changes are 
confined to a thin stable layer near the horizontal umlersurfaee 
of a large iceberg past which the seawater is in relative motion. 
If an iceberg 500 m in length is towed at a speed of 6 knots 
(3.1 m sec) in water at 15 deg G, then the parameter Gr / l ie 2 is 
cental (o 0.12 when based on (he density difference Ap in the re-

3 Numbers in brackets designate Additional References at end of 
discussion. 
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Fig. 6 The var ia t ion of f reezing point temperature and invers ion tem
perature {temperature of m a x i m u m density) w i t h the sal in i ty of sea
water . The t w o temperatures become equal at T = — 1.3 deg C, C = 
24.7 g / K g . 
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gion of uniform salinity and variable temperature. When a limit
ing value of Gr/Re 2 = 1 is employed for the same temperature 
conditions, the corresponding relative speed is l . lm/sec (2.3 
knots). For towing speeds or currents less than this value, 
the parameter Gr/Re 2 > 1 and free convection is likely to be
come an important factor in the heat transfer process. In his 
discussion Professor Watts has suggested a current of 7 m/'sec 
as being representative of the Gulf Stream. This is equal to 
13.6 knots, and one would not expect to find a current greater 
than 4-6 knots (2-3 m/sec) in the Gulf Stream. 

As Weeks and Campbell [12] point out, there are many im
portant engineering problems to be solved if a feasible and eco
nomical system is to be developed to transport and process part 
of the vast store of Antarctic glacial ice for fresh water supplies. 
Among the problems that await solution are several that in
volve both free and forced convection with phase transformation. 

The correct, form of equation (14) of the subject paper is written 
as follows: 

/Sm**\ Le Ai c, + a, D A, 
A,2 = I I 

\SC** J PrA,fc,+ ai/> 
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